scholarly journals Influence of surface roughness on the optical properties of plasmonic nanoparticles

2011 ◽  
Vol 83 (8) ◽  
Author(s):  
Andreas Trügler ◽  
Jean-Claude Tinguely ◽  
Joachim R. Krenn ◽  
Andreas Hohenau ◽  
Ulrich Hohenester
Nanoscale ◽  
2020 ◽  
Author(s):  
Feifei ZHANG ◽  
Jérôme Plain ◽  
Davy Gerard ◽  
Jérôme Martin

The surface topography is known to play an important role on the near- and far- field optical properties of metallic nanoparticles. In particular, aluminum (Al) nanoparticles are commonly fabricated through...


2019 ◽  
Vol 191 ◽  
pp. 199-208 ◽  
Author(s):  
Hélène Aréna ◽  
Moustapha Coulibaly ◽  
Audrey Soum-Glaude ◽  
Alban Jonchère ◽  
Adel Mesbah ◽  
...  

2005 ◽  
Vol 11 (S03) ◽  
pp. 162-165 ◽  
Author(s):  
L. von Mühlen ◽  
R. A. Simao ◽  
C. A. Achete

Surface chemistry and topography of materials are generally preponderant factors in a series of material properties, such as adhesion, wettability, friction and optical properties [1]. Wettability of films, for example, can be altered significantly by modifying its surface roughness and also by incorporating functional groups. Plasma treatment is a powerful and versatile way to modify surface properties of amorphous nitrogen-incorporated carbon thin films (a-C:H(N)) and obtain materials with improved properties, once it is possible to modify the surfaces in a controlled way by specific settings of plasma conditions. [2 - 4]


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 381 ◽  
Author(s):  
Roxana-Diana Vasiliu ◽  
Sorin Daniel Porojan ◽  
Mihaela Ionela Bîrdeanu ◽  
Liliana Porojan

Dental ceramic restorations are widely spread nowadays due to their aesthetics and biocompatibility. In time, the colour and structure of these ceramic materials can be altered by aging processes. How does artificial aging affect the optical and surface roughness of ceramics? This study aims to assess the effect of thermocycling, surface treatments and microstructure upon translucency, opalescence and surface roughness on CAD-CAM and heat-pressed glass-ceramic. Forty-eight samples (1.5 mm thickness) were fabricated from six types of A2 MT ceramic: heat-pressed and milled glass-ceramic (feldspathic, lithium disilicate and zirconia reinforced lithium silicate). The samples were obtained respecting the manufacturer’s instructions. The resulted surfaces (n = 96) were half glazed and half polished. The samples were subjected to thermocycling (10,000 cycles) and roughness values (Ra and Rz), colour coordinates (L*, a*, b*) and microstructural analyses were assessed before and after thermocycling. Translucency (TP) and opalescence (OP) were calculated. Values were statistically analysed using ANOVA test (one way). TP and OP values were significantly different between heat-pressed and milled ceramics before and also after thermocycling (p < 0.001). Surface treatments (glazing and polishing) had a significant effect on TP and OP and surface roughness (p < 0.05). The heat-pressed and milled zirconia reinforced lithium silicate glass-ceramic experienced a loss in TP and OP. Ra and Rz increased for the glazed samples, TP and OP decreased for all the samples after thermocycling. Microstructural analyse revealed that glazed surfaces were more affected by the thermocycling and especially for the zirconia reinforced lithium silicate ceramic. Optical properties and surface roughness of the chosen ceramic materials were affected by thermocycling, surface treatments and microstructural differences. The least affected of the ceramics was the lithium disilicate ceramic heat-pressed polished and glazed.


Sign in / Sign up

Export Citation Format

Share Document