Surface Modification of a-C:H(N) Thin Films by Plasma Treatment

2005 ◽  
Vol 11 (S03) ◽  
pp. 162-165 ◽  
Author(s):  
L. von Mühlen ◽  
R. A. Simao ◽  
C. A. Achete

Surface chemistry and topography of materials are generally preponderant factors in a series of material properties, such as adhesion, wettability, friction and optical properties [1]. Wettability of films, for example, can be altered significantly by modifying its surface roughness and also by incorporating functional groups. Plasma treatment is a powerful and versatile way to modify surface properties of amorphous nitrogen-incorporated carbon thin films (a-C:H(N)) and obtain materials with improved properties, once it is possible to modify the surfaces in a controlled way by specific settings of plasma conditions. [2 - 4]

2020 ◽  
Vol 22 (4) ◽  
pp. 2010-2018 ◽  
Author(s):  
Muhammad Abiyyu Kenichi Purbayanto ◽  
Andrivo Rusydi ◽  
Yudi Darma

The crystallinity of starting materials has a vital role in determining the structure modification and optical properties of ZnO films after H2 annealing.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mauro Melli ◽  
Melanie West ◽  
Steven Hickman ◽  
Scott Dhuey ◽  
Dianmin Lin ◽  
...  

AbstractThere are few materials that are broadly used for fabricating optical metasurfaces for visible light applications. Gallium phosphide (GaP) is a material that, due to its optical properties, has the potential to become a primary choice but due to the difficulties in fabrication, GaP thin films deposited on transparent substrates have never been exploited. In this article we report the design, fabrication, and characterization of three different amorphous GaP metasurfaces obtained through sputtering. Although the material properties can be further optimized, our results show the potential of this material for visible applications making it a viable alternative in the material selection for optical metasurfaces.


1999 ◽  
Vol 586 ◽  
Author(s):  
Xiujuan Zhang ◽  
Raymond. A. Young

ABSTRACTThe adhesion properties were evaluated for untreated and modified cellulose (cellophane) films. Several functional groups were introduced on the film surfaces by plasma based treatments. All the films were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM was employed to study the adhesion properties using both standard silicon nitride tips as well as self-assembled monolayer (SAM) modified gold coated tips containing a variety of specific functional groups. The acetone extracted cellulose films, which are rich in –OH groups, were used as substrates. The adhesion force detected with –COOH terminated AFM tips (∼ 34.8 nN) was much larger than that with –CH3 terminated AFM tips (∼16.7 nN), which was attributed to the hydrogen bonding between –COOH and –OH functional groups. The adhesion force of –NH2 terminated AFM tips on the acetone extracted cellulose film was higher at 42.92 nN. However, after surface modification of the cellulose films with argon and oxygen based plasma treatments, the adhesion force were decreased to 17.4 and 19.4 nN respectively as a result of greatly enhanced surface roughness. Hydrazine plasma treatment also was used to introduce –NH2 groups on the film surfaces, and the strongest adhesion behavior was observed with AFM tips terminated with -COOH groups on the aminated film due to acid-base interaction. The argon and oxygen plasma treatment greatly increased the surface roughness, resulting in poor adhesion properties. Both surface roughness and chemical modification of the cellophane films affected the adhesion properties as measured by AFM force curves.


2003 ◽  
Vol 529 (3) ◽  
pp. 410-418 ◽  
Author(s):  
Zhiyong Li ◽  
Patricia Beck ◽  
Douglas A.A Ohlberg ◽  
Duncan R Stewart ◽  
R.Stanley Williams

Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 413 ◽  
Author(s):  
Robert Müller ◽  
Lilit Ghazaryan ◽  
Paul Schenk ◽  
Sabrina Wolleb ◽  
Vivek Beladiya ◽  
...  

High-density ruthenium (Ru) thin films were deposited using Ru(EtCp)2 (bis(ethylcyclopentadienyl)ruthenium) and oxygen by thermal atomic layer deposition (ALD) and compared to magnetron sputtered (MS) Ru coatings. The ALD Ru film growth and surface roughness show a significant temperature dependence. At temperatures below 200 °C, no deposition was observed on silicon and fused silica substrates. With increasing deposition temperature, the nucleation of Ru starts and leads eventually to fully closed, polycrystalline coatings. The formation of blisters starts at temperatures above 275 °C because of poor adhesion properties, which results in a high surface roughness. The optimum deposition temperature is 250 °C in our tool and leads to rather smooth film surfaces, with roughness values of approximately 3 nm. The ALD Ru thin films have similar morphology compared with MS coatings, e.g., hexagonal polycrystalline structure and high density. Discrepancies of the optical properties can be explained by the higher roughness of ALD films compared to MS coatings. To use ALD Ru for optical applications at short wavelengths (λ = 2–50 nm), further improvement of their film quality is required.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 906
Author(s):  
Chea-Young Lee ◽  
Young-Hee Joo ◽  
Minsoo P. Kim ◽  
Doo-Seung Um ◽  
Chang-Il Kim

Plasma etching processes for multi-atomic oxide thin films have become increasingly important owing to the excellent material properties of such thin films, which can potentially be employed in next-generation displays. To fabricate high-performance and reproducible devices, the etching mechanism and surface properties must be understood. In this study, we investigated the etching characteristics and changes in the surface properties of InGaZnO4 (IGZO) thin films with the addition of O2 gases based on a CF4/Ar high-density-plasma system. A maximum etch rate of 32.7 nm/min for an IGZO thin film was achieved at an O2/CF4/Ar (=20:25:75 sccm) ratio. The etching mechanism was interpreted in detail through plasma analysis via optical emission spectroscopy and surface analysis via X-ray photoelectron microscopy. To determine the performance variation according to the alteration in the surface composition of the IGZO thin films, we investigated the changes in the work function, surface energy, and surface roughness through ultraviolet photoelectron spectroscopy, contact angle measurement, and atomic force microscopy, respectively. After the plasma etching process, the change in work function was up to 280 meV, the thin film surface became slightly hydrophilic, and the surface roughness slightly decreased. This work suggests that plasma etching causes various changes in thin-film surfaces, which affects device performance.


2021 ◽  
Vol 63 (8) ◽  
pp. 778-782
Author(s):  
Tülay Yıldız ◽  
Nida Katı ◽  
Kadriye Yalçın

Abstract In this study, undoped semiconductor ZnO thin film and Bi-doped ZnO thin films were produced using the sol-gel spin coating method. By changing each parameter of the spin coating method, the best conditions for the formation of the film were determined via the trial and error method. When the appropriate parameter was found, the specified parameter was applied for each film. The structural, superficial, and optical properties of the films produced were characterized via atomic force microscope (AFM), UV-visible spectroscopy, and Fourier transform infrared (FTIR), and the effects of Bi dopant on these properties were investigated. When the morphological properties of the undoped and Bi-doped ZnO films were examined, it was observed that they had a structure in a micro-fiber shape consisting of nanoparticles. When the surface roughness was examined, it was observed that the surface roughness values became larger as the rate of Bi dopant increased. By examining the optical properties of the films, it was determined that they were direct band transition materials and Bi-doped thin films were involved in the semiconductor range. In addition, optical properties changed positively with Bi dopant. Since Bi-doped ZnO thin film has a wide bandgap and good optical properties, it is a material that can be used in optoelectronic applications.


2013 ◽  
Vol 804 ◽  
pp. 3-7
Author(s):  
Chao Zhan ◽  
Wen Jian Ke ◽  
Xin Ming Li ◽  
Wan Li Du ◽  
Li Juan Wang ◽  
...  

Cubic ZnTiO3thin films have been prepared by radio frequency magnetron sputtering on n-type (100) Si substrate at different temperatures. The morphological and optical properties of ZnTiO3films in relation to substrate temperatures are investigated by spectroscopic ellipsometry (SE) and AFM as well as SEM in detail. X-ray diffraction (XRD) measurement shows that all the films have a cubic phase structure and the optimum substrate temperature to form crystalline ZnTiO3thin film is 250 °C. Through SEM and AFM, the particle size in thin films and film surface roughness increase with increasing the substrate temperature. Based on a parameterized TaucLorentz dispersion model, the optical constants and surface roughness of ZnTiO3films related to the substrate temperature are systematically extracted by SE measurement. The surface roughness of the film measured from AFM agrees well with result extracted from SE, which proved that the established SE model is reasonable. With increasing substrate temperature, the refractive index decreases and the main factor in determining the refractive index was deduced to be the surface roughness related to the film packing density. The extinction coefficient of the samples is close to zero, but increases slightly with the increase of the substrate temperature, which is due to the enhancement of scattering effect in the crystalline ZnTiO3film.


Sign in / Sign up

Export Citation Format

Share Document