scholarly journals Quantum discord for investigating quantum correlations without entanglement in solids

2012 ◽  
Vol 86 (10) ◽  
Author(s):  
Xing Rong ◽  
Zixiang Wang ◽  
Fangzhou Jin ◽  
Jianpei Geng ◽  
Pengbo Feng ◽  
...  
2021 ◽  
Author(s):  
Fadwa Benabdallah ◽  
Hamid Arian Zad ◽  
Mohammed Daoud ◽  
Nerses S Ananikian

Abstract We study the dimensionless time evolution of the logarithmic negativity and geometric quantum discord of a qubit-qutrit XXX spin model under the both Markovian and non-Markovian noise channels. We find that at a special temperature interval the quantum entanglement based on the logarithmic negativity reveals entanglement sudden deaths together with revivals. The revival phenomenon is due to the non-Markovianity resulting from the feedback effect of the environment. At high temperatures, the scenario of death and revival disappears. The geometric quantum discord evolves alternatively versus time elapsing with damped amplitudes until the system reaches steady state. It is demonstrated that the dynamics of entanglement negativity undergoes substantial changes by varying temperature, and it is much more fragile against the temperature rather than the geometric quantum discord. The real complex heterodinuclear [Ni(dpt (H2O)Cu(pba)]·2H2O [with pba =1,3-propylenebis(oxamato) and dpt = bis-(3-aminopropyl)amine] is an experimental representative of our considered bipartite qubit-qutrit system that may show remarkable entanglement deaths and revivals at relatively high temperatures and high magnetic field that is comparable with the strength of the exchange interaction J between Cu+2 and Ni+2 ions, i.e., kBT ≈ J and μBB ≈ J.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 543 ◽  
Author(s):  
Jin Liang ◽  
Chengwei Zhang

In this paper, we are concerned with the non-commutativity measure of quantum discord. We first present an explicit expression of the non-commutativity measure of quantum discord in the two-qubit case. Then we compare the geometric quantum discords for two dynamic models with their non-commutativity measure of quantum discords. Furthermore, we show that the results conducted by the non-commutativity measure of quantum discord are different from those conducted by both or one of the Hilbert-Schmidt distance discord and trace distance discord. These intrinsic differences indicate that the non-commutativity measure of quantum discord is incompatible with at least one of the well-known geometric quantum discords in the quantitative and qualitative representation of quantum correlations.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345032 ◽  
Author(s):  
T. WERLANG ◽  
G. A. P. RIBEIRO ◽  
GUSTAVO RIGOLIN

We review the main results and ideas showing that quantum correlations at finite temperatures (T), in particular quantum discord, are useful tools in characterizing quantum phase transitions (QPT) that only occur, in principle, at the unattainable absolute zero temperature. We first review some interesting results about the behavior of thermal quantum discord for small spin-1/2 chains and show that they already give us important hints of the infinite chain behavior. We then study in detail and in the thermodynamic limit (infinite chains) the thermal quantum correlations for the XXZ and XY models, where one can clearly appreciate that the behavior of thermal quantum discord at finite T is a useful tool to spotlight the critical point of a QPT.


2017 ◽  
Vol 15 (06) ◽  
pp. 1750047 ◽  
Author(s):  
Tsamouo Tsokeng Arthur ◽  
Tchoffo Martin ◽  
Lukong Cornelius Fai

We investigate the dynamics of entanglement, quantum discord (QD) and state coherence in a bipartite and noninteracting spin-qutrits system under mixed classical noises. Specifically, the collective effects of static noise (SN) and random telegraphic noise (RTN) each being coupled with a marginal system, are analyzed. While the static noise models a non-Markovian environment, the dynamic noise can model both a Markovian or a non-Markovian environment, and both dynamics are studied. We show that quantum correlations and coherence may survive the noise degrading effects at sufficiently long time when the Markovian regime of the RTN is considered. Meanwhile, the opposite is found in the non-Markovian regime, wherein the nonmonotonic dynamics of quantum features avoid sudden death phenomena. However, the static noise is more fatal to the survival of quantum correlations and quantum state coherence as compared to the RTN.


2013 ◽  
Vol 87 (5) ◽  
Author(s):  
Claudia Benedetti ◽  
Alexander P. Shurupov ◽  
Matteo G. A. Paris ◽  
Giorgio Brida ◽  
Marco Genovese

2011 ◽  
Vol 18 (04) ◽  
pp. 339-351 ◽  
Author(s):  
Dariusz Chruściński ◽  
Andrzej Kossakowski ◽  
Giuseppe Marmo ◽  
E. C. G. Sudarshan

We analyze the dynamics of coupled classical and quantum systems. The main idea is to treat both systems as true quantum ones and impose a family of superselection rules which imply that the corresponding algebra of observables of one subsystem is commutative and hence may be treated as a classical one. Equivalently, one may impose a special symmetry which restricts the algebra of observables to the 'classical' subalgebra. The characteristic feature of classical-quantum dynamics is that it leaves invariant a subspace of classical-quantum states, that is, it does not create quantum correlations as measured by the quantum discord.


2019 ◽  
Vol 17 (05) ◽  
pp. 1950044
Author(s):  
A. El Allati ◽  
H. Amellal ◽  
A. Meslouhi

A quantum error-correcting code is established in entangled coherent states (CSs) with Markovian and non-Markovian environments. However, the dynamic behavior of these optical states is discussed in terms of quantum correlation measurements, entanglement and discord. By using the correcting codes, these correlations can be as robust as possible against environmental effects. As the number of redundant CSs increases due to the repetitive error correction, the probabilities of success also increase significantly. Based on different optical field parameters, the discord can withstand more than an entanglement. Furthermore, the behavior of quantum discord under decoherence may exhibit sudden death and sudden birth phenomena as functions of dimensionless parameters.


2005 ◽  
Vol 03 (04) ◽  
pp. 691-728 ◽  
Author(s):  
FEDOR HERBUT

In relation to an observable and quantum state, the entity IC from previous work quantifies simultaneously coherence, incompatibility and quantumness. In this paper, its application to quantum correlations in bipartite states is studied. It is shown that Zurek's quantum discord can always be expressed as excess coherence information (global minus local). Strong and weak zero-discord cases are distinguished and investigated in terms of necessary and sufficient and sufficient conditions respectively. A unique string of relevant subsystem observables, each a function of the next, for "interrogating" the global state about the state of the opposite subsystem is derived with detailed entropy and information gain discussion. The apparent disappearance of discord in measurement is investigated, and it is shown that it is actually shifted from between subsystems 1 and 2 to between subsystems 1 and (2 + 3), where 3 is the measuring instrument. Finally, it is shown that the global coherence information IC(A2, ρ12) is shifted into the global coherence information [Formula: see text] in the final state [Formula: see text] of the measurement interaction.


2016 ◽  
Vol 14 (03) ◽  
pp. 1650016 ◽  
Author(s):  
Ya-Li Yuan ◽  
Xi-Wen Hou

The investigation of quantum discord has mostly focused on two-qubit systems due to the complicated minimization involved in quantum discord for high-dimensional states. In this work, three geometric discords are studied for the thermal state in a two-qutrit system with various couplings, external magnetic fields, and temperatures as well, where the entanglement measured in terms of the generalized negativity is calculated for reference. It is shown that three geometric discords are more robust against temperature and magnetic field than the entanglement negativity. However, all four quantities exhibit a similar behavior at lower temperature and weak magnetic field. Remarkably, three geometric discords at finite temperature reveal the phenomenon of double sudden changes at different magnetic fields while the negativity does not. Moreover, the hierarchy among three discords is discussed. Those adjustable discords with the varied coupling, temperature, and magnetic field are useful for the understanding of quantum correlations in high-dimensional states and quantum information processing.


Sign in / Sign up

Export Citation Format

Share Document