scholarly journals Thermal conductivity from phonon quasiparticles with subminimal mean free path in the MgSiO3 perovskite

2017 ◽  
Vol 96 (10) ◽  
Author(s):  
Dong-Bo Zhang ◽  
Philip B. Allen ◽  
Tao Sun ◽  
Renata M. Wentzcovitch
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1982
Author(s):  
Paul Desmarchelier ◽  
Alice Carré ◽  
Konstantinos Termentzidis ◽  
Anne Tanguy

In this article, the effect on the vibrational and thermal properties of gradually interconnected nanoinclusions embedded in an amorphous silicon matrix is studied using molecular dynamics simulations. The nanoinclusion arrangement ranges from an aligned sphere array to an interconnected mesh of nanowires. Wave-packet simulations scanning different polarizations and frequencies reveal that the interconnection of the nanoinclusions at constant volume fraction induces a strong increase of the mean free path of high frequency phonons, but does not affect the energy diffusivity. The mean free path and energy diffusivity are then used to estimate the thermal conductivity, showing an enhancement of the effective thermal conductivity due to the existence of crystalline structural interconnections. This enhancement is dominated by the ballistic transport of phonons. Equilibrium molecular dynamics simulations confirm the tendency, although less markedly. This leads to the observation that coherent energy propagation with a moderate increase of the thermal conductivity is possible. These findings could be useful for energy harvesting applications, thermal management or for mechanical information processing.


A series of experiments has been performed to study the steady flow of heat in liquid helium in tubes of diameter 0.05 to 1.0 cm at temperatures between 0.25 and 0.7 °K. The results are interpreted in terms of the flow of a gas of phonons, in which the mean free path λ varies with temperature, and may be either greater or less than the diameter of the tube d . When λ ≫ d the flow is limited by the scattering of the phonons at the walls, and the effect of the surface has been studied, but when λ ≪ d viscous flow is set up in which the measured thermal conductivity is increased above that for wall scattering. This behaviour is very similar to that observed in the flow of gases at low pressures, and by applying kinetic theory to the problem it can be shown that the mean free path of the phonons characterizing viscosity can be expressed by the empirical relation λ = 3.8 x 10 -3 T -4.3 cm. This result is inconsistent with the temperature dependence of λ as T -9 predicted theoretically by Landau & Khalatnikov (1949).


2019 ◽  
Vol 21 (5) ◽  
pp. 2453-2462 ◽  
Author(s):  
Daewoo Suh ◽  
Sanghoon Lee ◽  
Chenchen Xu ◽  
Agha Aamir Jan ◽  
Seunghyun Baik

A percolation network of silver nanoflowers dramatically increased the thermal conductivity (42.4 W m−1 K−1) in soft polyurethane-matrix thermal interface materials.


1987 ◽  
Vol 99 ◽  
Author(s):  
J. E. Graebner ◽  
L. F. Schneemeyer ◽  
R. J. Cava ◽  
J. V. Waszczak ◽  
E. A. Rietman

ABSTRACTThe thermal conductivity k of micro-twinned single crystals of YBa2Cu3O7 and HoBa2Cu3O7 and a sintered sample of YBa2Cu3O7 has been measured for temperatures 0.03<T<5K. For the single crystals, k is small and varies as T1.8-1.9 This behavior resembles k for glassy insulators except for the lack of a plateau above IK. It is concluded that the thermal carriers are phonons with their mean free path limited by resonant scattering from tunneling entities, as in glasses. Suggestions for the location of tunneling systems are given. For the sinter, k is still smaller but does not follow a power law T-dependence. It is similar to other sintered ceramics with the same particle size, where the phonon mean free path is dominated by Rayleigh scattering from the particles. This strong scattering from the microstructure presumably masks the scattering from TS within each particle.


Author(s):  
Ravi Prasher

Thermal conductivity of packed bed of nanoparticles is calculated in this paper. Results show that effective thermal conductivity of nanoparticle bed can be very low. Thermal conductivity of the nanoparticle bed can be smaller than the thermal conductivity of air. Thermal conductivity depends on pressure, surface energy of the nanoparticle, and phonon mean free path.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Qiaoli Zhou ◽  
Fanyan Meng ◽  
Zhuhong Liu ◽  
Sanqiang Shi

The thermal conductivity of various carbon nanotubes with defects or intramolecular junctions was studied using nonequilibrium molecular dynamics approach. The results show that the thermal conductivity of both armchair and zigzag carbon nanotubes increased with the decrease of the radius of the tube. The thermal conductivity of armchair tube is higher than that of zigzag tube when the radii of the two tubes are kept almost same. Discontinuities appear on the temperature profile along the tube axial at the region of IMJ, resulting in the large temperature gradient and thus lower thermal conductivity of(n,n)/(m,0)tube with one IMJ and(m,0)/(n,n)/(m,0)tube with two IMJs. For the(m,0)/(n,n)/(m,0)tube with two IMJs, phonon mean free path of the middle(n,n)tube is much smaller than that of the isolate(n,n)tube.


1993 ◽  
Vol 115 (1) ◽  
pp. 17-25 ◽  
Author(s):  
K. E. Goodson ◽  
M. I. Flik

Electrons and phonons are the carriers of heat in the a-b plane of the high-Tc superconductor YBa2Cu3O7. In the absence of boundary scattering, the a-b plane thermal conductivity and the mean free path of each carrier type are calculated as functions of temperature using kinetic theory, the two-fluid model of the superconducting state, and experimental data for the thermal conductivity and electrical resistivity of a single crystal. The reduction by boundary scattering of the effective a-b plane thermal conductivity along an epitaxial YBa2Cu3O7 film is predicted as a function of temperature and film thickness. The size effect on the phonon conductivity dominates over the size effect on the electron conductivity. The predicted electron mean free path is limited by scattering on defects and is in very good agreement with experimental data from infrared spectroscopy.


Of the many experimental determinations of the thermal conductivity of Co 2 which have been made, the absolute values given by the various observers vary from 3·07 × 10 -5 cal. sec. -1 cm. -1 deg. -1 (Winkelman, 1), to 3·39 × 10 -5 cal. sec. -1 cm. -1 deg. -1 (Weber, 2), and generally speaking the experiments were modifications of two principal methods, namely, the electrically heated wire of Schleimacher (3) and the cooling thermometer method. In both of these methods convection losses were present to a degree depending on the dimensions and disposition of the apparatus, and on the pressure of the gas; therefore, in the author’s opinion, the discrepancies amongst various observers are due to the practice of attempting to eliminate these convective losses by diminishing the pressure. Such a procedure is justifiable only if the reduction of pressure is not carried beyond the point at which the mean free path of the molecules becomes comparable with the dimensions of the containing vessel. This is a critical point in the determination of the conductivity of a gas, as the authors’ experiments on Co 2 indicate that the convection becomes negligible only at pressures for which the mean Free Path Effect is such that the significance imposed on the conductivity by Fourier’s law loses its meaning, and below this critical pressure the conductivity varies with the pressure in a manner depending on the dimensions of the vessel containing the gas. In the experiments of Gregory and Archer (4), on the thermal conductivities of air and hydrogen, the use of a double system of electrically-heated wires enabled the authors accurately to identify the critical pressure at which convective losses became negligible. This is an extremely important point in all applications of the hot-wire method to the absolute determination of the conductivities of gases, and alone justifies the procedure of lowering the pressure to eliminate convective losses. Above this critical pressure it is necessary to disentangle the conduction and convection losses, and below, the meaning of conduction loses its ordinary significance.


Sign in / Sign up

Export Citation Format

Share Document