scholarly journals Large spin current generation by the spin Hall effect in mixed crystalline phase Ta thin films

2018 ◽  
Vol 98 (10) ◽  
Author(s):  
Akash Kumar ◽  
Rajni Bansal ◽  
Sujeet Chaudhary ◽  
Pranaba Kishor Muduli
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Makoto Naka ◽  
Satoru Hayami ◽  
Hiroaki Kusunose ◽  
Yuki Yanagi ◽  
Yukitoshi Motome ◽  
...  

Abstract Spin current–a flow of electron spins without a charge current–is an ideal information carrier free from Joule heating for electronic devices. The celebrated spin Hall effect, which arises from the relativistic spin-orbit coupling, enables us to generate and detect spin currents in inorganic materials and semiconductors, taking advantage of their constituent heavy atoms. In contrast, organic materials consisting of molecules with light elements have been believed to be unsuited for spin current generation. Here we show that a class of organic antiferromagnets with checker-plate type molecular arrangements can serve as a spin current generator by applying a thermal gradient or an electric field, even with vanishing spin-orbit coupling. Our findings provide another route to create a spin current distinct from the conventional spin Hall effect and open a new field of spintronics based on organic magnets having advantages of small spin scattering and long lifetime.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
X. R. Wang

AbstractSpin current is a very important tensor quantity in spintronics. However, the well-known spin-Hall effect (SHE) can only generate a few of its components whose propagating and polarization directions are perpendicular with each other and to an applied charge current. It is highly desirable in applications to generate spin currents whose polarization can be in any possible direction. Here anomalous SHE and inverse spin-Hall effect (ISHE) in magnetic systems are predicted. Spin currents, whose polarisation and propagation are collinear or orthogonal with each other and along or perpendicular to the charge current, can be generated, depending on whether the applied charge current is along or perpendicular to the order parameter. In anomalous ISHEs, charge currents proportional to the order parameter can be along or perpendicular to the propagating or polarization directions of the spin current.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongjoon Lee ◽  
Dongwook Go ◽  
Hyeon-Jong Park ◽  
Wonmin Jeong ◽  
Hye-Won Ko ◽  
...  

AbstractThe orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering.


2020 ◽  
Vol 29 (10) ◽  
pp. 9-15
Author(s):  
Dongwook GO ◽  
Hyun-Woo LEE

The orbital degree of freedom is often considered to be quenched in solids due to the potential of the crystal field. In contrast to such expectation, we showed recently that the orbital current can be electrically generated despite orbital quenching in equilibrium, leading to a phenomenon called the orbital Hall effect. In this article, we provide a pedagogical introduction to the concept of an orbital current in solids and the mechanism underlying the orbital Hall effect. We also discuss the relation between the orbital Hall effect and the spin Hall effect, as well as a way to utilize the orbital current in spin-orbitronic devices.


Sign in / Sign up

Export Citation Format

Share Document