scholarly journals Axially symmetric particlelike solutions with the flux of a magnetic field in the non-Abelian Proca-Higgs theory

2021 ◽  
Vol 104 (11) ◽  
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev
2000 ◽  
Vol 179 ◽  
pp. 379-380
Author(s):  
Gaetano Belvedere ◽  
Kirill Kuzanyan ◽  
Dmitry Sokoloff

Extended abstractHere we outline how asymptotic models may contribute to the investigation of mean field dynamos applied to the solar convective zone. We calculate here a spatial 2-D structure of the mean magnetic field, adopting real profiles of the solar internal rotation (the Ω-effect) and an extended prescription of the turbulent α-effect. In our model assumptions we do not prescribe any meridional flow that might seriously affect the resulting generated magnetic fields. We do not assume apriori any region or layer as a preferred site for the dynamo action (such as the overshoot zone), but the location of the α- and Ω-effects results in the propagation of dynamo waves deep in the convection zone. We consider an axially symmetric magnetic field dynamo model in a differentially rotating spherical shell. The main assumption, when using asymptotic WKB methods, is that the absolute value of the dynamo number (regeneration rate) |D| is large, i.e., the spatial scale of the solution is small. Following the general idea of an asymptotic solution for dynamo waves (e.g., Kuzanyan & Sokoloff 1995), we search for a solution in the form of a power series with respect to the small parameter |D|–1/3(short wavelength scale). This solution is of the order of magnitude of exp(i|D|1/3S), where S is a scalar function of position.


1969 ◽  
Vol 3 (2) ◽  
pp. 255-267 ◽  
Author(s):  
M. P. Srivastava ◽  
P. K. Bhat

We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.


2020 ◽  
Vol 498 (2) ◽  
pp. 3000-3012 ◽  
Author(s):  
F Castillo ◽  
A Reisenegger ◽  
J A Valdivia

ABSTRACT In a previous paper, we reported simulations of the evolution of the magnetic field in neutron star (NS) cores through ambipolar diffusion, taking the neutrons as a motionless uniform background. However, in real NSs, neutrons are free to move, and a strong composition gradient leads to stable stratification (stability against convective motions) both of which might impact on the time-scales of evolution. Here, we address these issues by providing the first long-term two-fluid simulations of the evolution of an axially symmetric magnetic field in a neutron star core composed of neutrons, protons, and electrons with density and composition gradients. Again, we find that the magnetic field evolves towards barotropic ‘Grad–Shafranov equillibria’, in which the magnetic force is balanced by the degeneracy pressure gradient and gravitational force of the charged particles. However, the evolution is found to be faster than in the case of motionless neutrons, as the movement of charged particles (which are coupled to the magnetic field, but are also limited by the collisional drag forces exerted by neutrons) is less constrained, since neutrons are now allowed to move. The possible impact of non-axisymmetric instabilities on these equilibria, as well as beta decays, proton superconductivity, and neutron superfluidity, are left for future work.


Geophysics ◽  
1974 ◽  
Vol 39 (3) ◽  
pp. 355-355
Author(s):  
Shri Krishna Singh

In this paper Verma obtains a time‐domain solution by inverting the frequency‐domain solution given by Wait (1952). However, it has been recently pointed out by Singh (1973a) (see also Wait, 1973) that there is an error in the quasi‐static solution of Wait. Wait neglected the axially symmetric inducted electric current in the cylinder giving rise to a secondary transverse magnetic field outside (the n=0 term in the scattered wavefield). Singh (1973a) has shown that this term dominates. [It should be noted that Wait in his other works on the cylinder retains this term (e.g., Wait, 1959).] It is clear that this term would be dominant in the time‐domain also. This has been shown by Singh (1972, 1973b). Since the theoretical solution given by Verma in the paper under discussion is incomplete, his interpretation schemes are meaningless.


1953 ◽  
Vol 31 (5) ◽  
pp. 820-836 ◽  
Author(s):  
G. M. Volkoff

The dependence of electric quadrupole splitting of nuclear magnetic resonance absorption lines in single crystals on crystal orientation in an external magnetic field is investigated theoretically following earlier work of Pound, of Volkoff, Petch, and Smellie, and of Bersohn. Explicit formulae are given, applicable to non axially symmetric crystalline electric field gradients (η ≠ 0), and valid up to terms of the second order in the quadrupole coupling constant [Formula: see text], for the dependence of the absorption frequencies on the angle of rotation of the crystal about any arbitrary axis perpendicular to the magnetic field. Some formulae including third order effects in Cz are also given. It is shown that an experimental study of the dependence of this splitting on the angles of rotation about any two arbitrary mutually perpendicular axes is sufficient, when second order effects are measurable, to yield the values of | Cz |, η, and the orientation of the principal axes of the electric field gradient tensor at the nuclear sites. In the case that the direction of one of the principal axes is known from crystal symmetry, a single rotation about this axis gives the complete information.A new method of determining nuclear spin I is proposed which depends on comparing first and second order shifts of the resonance frequencies of the strong inner line components. The method will be of interest in those cases where the total number 2I of line components can not be unambiguously ascertained owing to the outer line components being excessively broadened and weakened by crystal imperfections.


Sign in / Sign up

Export Citation Format

Share Document