scholarly journals Quantum quenches in anXXZspin chain from a spatially inhomogeneous initial state

2010 ◽  
Vol 81 (6) ◽  
Author(s):  
Jarrett Lancaster ◽  
Aditi Mitra
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Lorenzo Piroli ◽  
Pasquale Calabrese ◽  
Fabian Essler

We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function g_2g2.


2017 ◽  
Vol 31 (04) ◽  
pp. 1750029 ◽  
Author(s):  
Liqiang Feng ◽  
Yi Li ◽  
Fanshun Meng ◽  
Hang Liu ◽  
R. S. Castle

High-order harmonic spectra and attosecond pulse generation from Rydberg atom (He[Formula: see text]) driven by the spatially inhomogeneous field have been theoretically investigated. (i) Firstly, with an electron initially in a single excited Rydberg state (nth), the harmonic yield can be enhanced due to the decreased ionization potential, and a maximum enhancement can be obtained when the initial state is prepared as the third excited state (n = 3). However, the low cutoff energy from the excited state is unbeneficial to the generation of the higher photon pulse. Thus, with the further introduction of the laser chirp, not only the harmonic cutoff is extended, but also the harmonic modulation is reduced. As a result, five super-bandwidths from 63 eV to 267 eV can be found. (ii) Secondly, by preparing the initial state as a coherent superposition of excited state, the harmonic yield can be further enhanced, especially for the coherent superposition of the first and the third (n = 1 + 3) and the second and the fourth (n = 2 + 4) excited states, the harmonic yield is enhanced by 4–8 orders of magnitude compared with the case of the single ground initial state. Furthermore, by properly adding the laser pulse into the spatially inhomogeneous region (gap center [Formula: see text] a.u.) from left [Formula: see text] to right [Formula: see text], much higher cutoff energies can be obtained in the left region. As a consequence, two super-bandwidths of 248 eV and 496 eV can be obtained. Finally, by properly superposing the harmonics, a series of sub-25-as pulses with intensity enhancement of 5–8 orders of magnitude can be produced.


2018 ◽  
Vol 73 (4) ◽  
pp. 303-313
Author(s):  
Gangtai Zhang ◽  
Tingting Bai

AbstractWe theoretically present an efficient method of generating an intense isolated short attosecond (as) pulse in a spatially inhomogeneous field. It is shown that this spatiotemporally combined field can significantly extend the harmonic cut-off and enhance the harmonic efficiency when the initial state is a coherent superposition of the ground and excited states. Then, a highly efficient continuum spectrum with an extremely wide bandwidth is directly generated. Due to the introduction of the spatial inhomogeneity, the short path is selected and the long one is removed; as a result, an intense isolated 17.3-as pulse is obtained straightforwardly. In addition, we also investigate the influences of the parameters including the population of the excited state, spatial inhomogeneity, carrier–envelope phase, pulse duration, and intensity on the harmonic spectrum.


Author(s):  
F. I. Grace

An interest in NiTi alloys with near stoichiometric composition (55 NiTi) has intensified since they were found to exhibit a unique mechanical shape memory effect at the Naval Ordnance Laboratory some twelve years ago (thus refered to as NITINOL alloys). Since then, the microstructural mechanisms associated with the shape memory effect have been investigated and several interesting engineering applications have appeared.The shape memory effect implies that the alloy deformed from an initial shape will spontaneously return to that initial state upon heating. This behavior is reported to be related to a diffusionless shear transformation which takes place between similar but slightly different CsCl type structures.


1998 ◽  
Vol 08 (PR7) ◽  
pp. Pr7-33-Pr7-42
Author(s):  
L. L. Alves ◽  
G. Gousset ◽  
C. M. Ferreira

2012 ◽  
Vol 8 (1) ◽  
pp. 37-48
Author(s):  
S. Chehaibi ◽  
K. Abrougui ◽  
F. Haouala

The effects of mechanical perforation densities by extracting soil cores through an aerator Vertidrain with a working width of 1.6 m and equipped with hollow tines spaced of 65 mm, were studied on a sandy soil of a grassy sward in the Golf Course El Kantaoui in Sousse (Tunisia). The mechanical aeration was performed at two densities: 250 and 350 holes/m2. The cone penetration resistance and soil water infiltration were measured. These parameters were performed at initial state before aeration (E0) and then on the 10th, 20th and 30th day after aeration. These results showed that perforation density of 350 holes/m2 had a positive effect on the soil by reducing its cone resistance to penetration compared to the initial state (Rp = 14.8 daN/cm2). At 5 cm depth the decrease in resistance to penetration was 34% and 43% on the 10th and 20th day after aeration, respectively. However, on the 30th day after aeration the soil resistance to penetration tended to grow and its value compared to the initial state decreased only by 21 and 26%, respectively, at 5 and 15 cm of depth only by 10% and 9% with 250 holes/m2 density. The soil water infiltration made a good improvement after aeration compared to the initial state. This parameter increased from 4.8 cm/h to 8.3, 10.9 and 13.1 cm/h with 250 holes/m2 density and to 10, 12.9 and 14.8 cm/h with 350 holes/m2 density on the 10th, 20th and 30th day following the aeration.


2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


Sign in / Sign up

Export Citation Format

Share Document