scholarly journals Poiseuille flow of soft glasses in narrow channels: From quiescence to steady state

2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Pinaki Chaudhuri ◽  
Jürgen Horbach

Two-body interactions of small rigid and deformable spheres in dilute suspensions undergoing Poiseuille flow at Reynolds numbers less than 10 –3 were studied and found to be similar to those previously observed in Couette flow. Two-body collisions between rigid spheres were symmetrical and reversible, the paths of approach and recession being curvilinear and mirror images of one another, except near the wall. The measured collision frequency agreed well with a theory based on rectilinear approach and recession, whereas the measured steady-state number of doublets was twice that predicted by the theory. The discrepancy was in part due to the existence of non-sepa­rating doublets, the orbits of which were also studied. In contrast, collisions between liquid drops were unsymmetrical, thus providing a mechanism for net migration of drops towards the tube axis in addition to the axial migration previously observed with single deformed drops.


2016 ◽  
Vol 809 ◽  
pp. 726-774 ◽  
Author(s):  
Shubhadeep Mandal ◽  
Aditya Bandopadhyay ◽  
Suman Chakraborty

The effect of a uniform electric field on the motion of a drop in an unbounded plane Poiseuille flow is studied analytically. The drop and suspending media are considered to be Newtonian and leaky dielectric. We solve for the two-way coupled electric and flow fields analytically by using a double asymptotic expansion for small charge convection and small shape deformation. We obtain two important mechanisms of cross-stream migration of the drop: (i) shape deformation and (ii) charge convection. The second one is a new source of cross-stream migration of the drop in plane Poiseuille flow which is due to an asymmetric charge distribution on the drop surface. Our study reveals that charge convection can cause a spherical non-deformable drop to migrate in the cross-stream direction. The combined effect of charge convection and shape deformation significantly alters the drop velocity, drop trajectory and steady state transverse position of the drop. We predict that, depending on the orientation of the applied uniform electric field and the relevant drop/medium electrohydrodynamic parameters, the drop may migrate either towards the centreline of the flow or away from it. We obtain that the final steady state transverse position of the drop is independent of its initial transverse position in the flow field. Most interestingly, we show that the drop can settle in an off-centreline steady state transverse position. Two-dimensional numerical simulations are also performed to study the drop motion in the combined presence of plane Poiseuille flow and a tilted electric field. The drop trajectory and steady state transverse position of the drop obtained from numerical simulations are in qualitative agreement with the analytical results.


2000 ◽  
Vol 411 ◽  
pp. 325-350 ◽  
Author(s):  
SAEED MORTAZAVI ◽  
GRÉTAR TRYGGVASON

The cross-stream migration of a deformable drop in two-dimensional Hagen–Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (< 1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For viscosity ratio 0.125 a drop moves toward the centre of the channel, while for ratio 1.0 it moves away from the centre until halted by wall repulsion. The rate of migration increases with the deformability of the drop. At higher Reynolds numbers (5–50), the drop either moves to an equilibrium lateral position about halfway between the centreline and the wall – according to the so-called Segre–Silberberg effect or it undergoes oscillatory motion. The steady-state position depends only weakly on the various physical parameters of the flow, but the length of the transient oscillations increases as the Reynolds number is raised, or the density of the drop is increased, or the viscosity of the drop is decreased. Once the Reynolds number is high enough, the oscillations appear to persist forever and no steady state is observed. The numerical results are in good agreement with experimental observations, especially for drops that reach a steady-state lateral position. Most of the simulations assume that the flow is two-dimensional. A few simulations of three-dimensional flows for a modest Reynolds number (Re = 10), and a small computational domain, confirm the behaviour seen in two dimensions. The equilibrium position of the three-dimensional drop is close to that predicted in the simulations of two-dimensional flow.


Author(s):  
C. Atkinson ◽  
C. R. Champion

AbstractIn this article, exact and approximate techniques are used to obtain parameters of interest for two problems involving differential equations of power-law type. The first problem is related to non-linear steady-state diffusion, and is investigated by means of a hodograph transformation and an approximation using a path-independent integral. The second problem involves Poiseuille flow of a pseudo-plasticfluid, and a path-independent integral is derived which yields an exact result for the geometry under consideration.


2014 ◽  
Vol 90 (3) ◽  
Author(s):  
Othmane Aouane ◽  
Marine Thiébaud ◽  
Abdelilah Benyoussef ◽  
Christian Wagner ◽  
Chaouqi Misbah

Open Physics ◽  
2003 ◽  
Vol 1 (3) ◽  
Author(s):  
Gábor Házi

AbstractA general class of analytical solutions of the lattice Boltzmann equation is derived for two-dimensional, steady-state unidirectional flows. A subset of the solutions that verifies the corresponding Navier-Stokes equations is given. It is pointed out that this class includes, e.g., the Couette and the Poiseuille flow but not, e.g., the basic Kolmogorov flow. For steady-state non-unidirectional flows, first and second order solutions of the lattice Boltzmann equation are derived. Practical consequences of the analysis are mentioned. Differences between the technique applied here and those used in some earlier works are emphasized.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2021 ◽  
Author(s):  
Wu Lan ◽  
Yuan Peng Du ◽  
Songlan Sun ◽  
Jean Behaghel de Bueren ◽  
Florent Héroguel ◽  
...  

We performed a steady state high-yielding depolymerization of soluble acetal-stabilized lignin in flow, which offered a window into challenges and opportunities that will be faced when continuously processing this feedstock.


Sign in / Sign up

Export Citation Format

Share Document