scholarly journals Super-Arrhenius behavior of molecular glass formers

2019 ◽  
Vol 99 (3) ◽  
Author(s):  
Ankit Singh ◽  
Yashwant Singh
1997 ◽  
Vol 7 (11) ◽  
pp. 1635-1650 ◽  
Author(s):  
A. Faivre ◽  
L. David ◽  
J. Perez

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Franz Demmel ◽  
Louis Hennet ◽  
Noel Jakse

AbstractThe characteristic property of a liquid, discriminating it from a solid, is its fluidity, which can be expressed by a velocity field. The reaction of the velocity field on forces is enshrined in the transport parameter viscosity. In contrast, a solid reacts to forces elastically through a displacement field, the particles are trapped in their potential minimum. The flow in a liquid needs enough thermal energy to overcome the changing potential barriers, which is supported through a continuous rearrangement of surrounding particles. Cooling a liquid will decrease the fluidity of a particle and the mobility of the neighbouring particles, resulting in an increase of the viscosity until the system comes to an arrest. This process with a concomitant slowing down of collective particle rearrangements might already start deep inside the liquid state. The idea of the potential energy landscape provides an attractive picture for these dramatic changes. However, despite the appealing idea there is a scarcity of quantitative assessments, in particular, when it comes to experimental studies. Here we present results on a monatomic liquid metal through a combination of ab initio molecular dynamics, neutron spectroscopy and inelastic x-ray scattering. We investigated the collective dynamics of liquid aluminium to reveal the changes in dynamics when the high temperature liquid is cooled towards solidification. The results demonstrate the main signatures of the energy landscape picture, a reduction in the internal atomic structural energy, a transition to a stretched relaxation process and a deviation from the high-temperature Arrhenius behavior of the relaxation time. All changes occur in the same temperature range at about $$1.4 \cdot T_{melting}$$ 1.4 · T melting , which can be regarded as the temperature when the liquid aluminium enters the landscape influenced phase and enters a more viscous liquid state towards solidification. The similarity in dynamics with other monatomic liquid metals suggests a universal dynamic crossover above the melting point.


2021 ◽  
Author(s):  
Yotaro Kasahara ◽  
Ichiro Hisaki ◽  
Tomoyuki Akutagawa ◽  
Takashi Takeda

We prepared octylbenzoate-substituted [12]DBA (C8[12]DBA) as an organic molecular glass material. Even with a central large, planar π unit of [12]DBA, which is generally advantageous for the formation of a...


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Zul Hazrin Z. Abidin

Solid polymer electrolytes based on chitosan NaCF3SO3 have been prepared by the solution cast technique. X-ray diffraction shows that the crystalline phase of the pure chitosan membrane has been partially disrupted. The fourier transform infrared (FTIR) results reveal the complexation between the chitosan polymer and the sodium triflate (NaTf) salt. The dielectric constant and DC conductivity follow the same trend with NaTf salt concentration. The increase in dielectric constant at different temperatures indicates an increase in DC conductivity. The ion conduction mechanism follows the Arrhenius behavior. The dependence of DC conductivity on both temperature and dielectric constant (σdc(T,ε′)=σ0e−Ea/KBT) is also demonstrated.


1996 ◽  
Vol 441 ◽  
Author(s):  
W. K. Liu ◽  
X. M. Fang ◽  
P. J. McCann ◽  
M. B. Santos

AbstractRHEED intensity oscillations observed during MBE growth of CaF2 on Si(111) and PbSe on CaF2/Si(111) are presented. The effects of substrate temperature and initial nucleation procedure are investigated. Strong temporal oscillations of the specular beam intensity are found to be most readily observed at temperatures below 200°C for both CaF2 and PbSe. Growth rates measured as a function of cell temperatures exhibit Arrhenius behavior with activation energies of 5.0 eV and 1.93 eV for CaF2 and PbSe, respectively. The relatively high activation energy obtained for CaF2 is consistent with the high melting point and sublimation energy of ionic fluorides.


2009 ◽  
Vol 15 (2) ◽  
pp. 159-168 ◽  
Author(s):  
M.J. Galotto ◽  
S.A. Anfossi ◽  
A. Guarda

Absorption kinetics of three different forms of the same iron-based oxygen scavenger were studied. Oxygen scavengers were used as pellet, sheet, and film materials. Two scavenger concentrations were used for sheet and film forms. Scavenger samples were analyzed at 75 or 100% relative humidities and stored at 5, 15, and 25°C. Oxygen concentration in the headspace was measured as a function of time. Absorption kinetics was best described by the Chapman-Richards empirical growth model rather than by a first-order reaction. Arrhenius behavior was observed for variations in the final absorption rate with temperature. Absorption capacities, final absorption rates, and activation energies were evaluated and discussed. Scavenger concentration, relative humidity, and temperature effects on kinetic parameters were studied for each experimental condition. Temperature was the most important factor that affected kinetic parameters. At the relative humidity levels studied, any important effect on kinetic parameters was not observed, except on absorption capacities.


Langmuir ◽  
2017 ◽  
Vol 33 (40) ◽  
pp. 10645-10654 ◽  
Author(s):  
Chungen Hsu ◽  
Yi Du ◽  
Xiaogong Wang
Keyword(s):  

2012 ◽  
Vol 22 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Illhun Cho ◽  
Se Hun Kim ◽  
Jong H. Kim ◽  
Sanghyuk Park ◽  
Soo Young Park

Sign in / Sign up

Export Citation Format

Share Document