scholarly journals Particle Self-Bunching in the Schwinger Effect in Spacetime-Dependent Electric Fields

2011 ◽  
Vol 107 (18) ◽  
Author(s):  
F. Hebenstreit ◽  
R. Alkofer ◽  
H. Gies
2020 ◽  
Vol 37 (11) ◽  
pp. 115003
Author(s):  
Shu-Min Wu ◽  
Hao-Sheng Zeng

2015 ◽  
Vol 30 (11) ◽  
pp. 1530026 ◽  
Author(s):  
Daisuke Kawai ◽  
Yoshiki Sato ◽  
Kentaroh Yoshida

This is a review of the recent progress on a holographic description of the Schwinger effect. In 2011, Semenoff and Zarembo proposed a scenario to study the Schwinger effect in the context of the AdS/CFT correspondence. The production rate of quark–antiquark pairs was computed in the Coulomb phase. In particular, it provided the critical value of external electric field, above which particles are freely created and the vacuum decays catastrophically. Then the potential analysis in the holographic approach was invented and it enabled us to study the Schwinger effect in the confining phase as well. A remarkable feature of the Schwinger effect in the confining phase is to exhibit another kind of the critical value, below which the pair production cannot occur and the vacuum of the system is nonperturbatively stable. The critical value is tantamount to the confining string tension. We computed the pair production rate numerically and introduced new exponents associated with the critical electric fields.


2018 ◽  
Vol 98 (6) ◽  
Author(s):  
O. O. Sobol ◽  
E. V. Gorbar ◽  
M. Kamarpour ◽  
S. I. Vilchinskii

2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Shintaro Takayoshi ◽  
Jianda Wu ◽  
Takashi Oka

We study the tunneling mechanism of nonlinear optical processes in solids induced by strong coherent laser fields. The theory is based on an extension of the Landau-Zener model with nonadiabatic geometric effects. In addition to the rectification effect known previously, we find two effects, namely perfect tunneling and counterdiabaticity at fast sweep speed. We apply this theory to the twisted Schwinger effect, i.e., nonadiabatic pair production of particles by rotating electric fields, and find a nonperturbative generation mechanism of the opto-valley polarization and photo-current in Dirac and Weyl fermions.


Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
John Silcox

Several aspects of magnetic and electric effects in electron microscope images are of interest and will be discussed here. Clearly electrons are deflected by magnetic and electric fields and can give rise to image detail. We will review situations in ferromagnetic films in which magnetic image effects are the predominant ones, others in which the magnetic effects give rise to rather subtle changes in diffraction contrast, cases of contrast at specimen edges due to leakage fields in both ferromagnets and superconductors and some effects due to electric fields in insulators.


Author(s):  
V. Kaushik ◽  
P. Maniar ◽  
J. Olowolafe ◽  
R. Jones ◽  
A. Campbell ◽  
...  

Lead zirconium titanate films (Pb (Zr,Ti) O3 or PZT) are being considered for potential application as dielectric films in memory technology due to their high dielectric constants. PZT is a ferroelectric material which shows spontaneous polarizability, reversible under applied electric fields. We report herein some results of TEM studies on thin film capacitor structures containing PZT films with platinum-titanium electrodes.The wafers had a stacked structure consisting of PZT/Pt/Ti/SiO2/Si substrate as shown in Figure 1. Platinum acts as electrode material and titanium is used to overcome the problem of platinum adhesion to the oxide layer. The PZT (0/20/80) films were deposited using a sol-gel method and the structure was annealed at 650°C and 800°C for 30 min in an oxygen ambient. XTEM imaging was done at 200KV with the electron beam parallel to <110> zone axis of silicon.Figure 2 shows the PZT and Pt layers only, since the structure had a tendency to peel off at the Ti-Pt interface during TEM sample preparation.


Sign in / Sign up

Export Citation Format

Share Document