Solubility Curve and Molar Density of DiluteHe3-He4Mixtures

1967 ◽  
Vol 19 (15) ◽  
pp. 831-833 ◽  
Author(s):  
E. M. Ifft ◽  
D. O. Edwards ◽  
R. E. Sarwinski ◽  
M. M. Skertic
CrystEngComm ◽  
2021 ◽  
Author(s):  
Maryam Bari ◽  
Hua Wu ◽  
Alexei A. Bokov ◽  
Rana Faryad Ali ◽  
Hamel N. Tailor ◽  
...  

Growth of MAPbX3 (X = I, Br, and Cl) single crystals by room temperature crystallization (RTC) method, and the crystallization pathway illustrated by the solubility curve of MAPbCl3 in DMSO, compared with inverse temperature crystallization (ITC) method.


1938 ◽  
Vol 21 (3) ◽  
pp. 335-366 ◽  
Author(s):  
John H. Northrop

1. A method for isolating a nucleoprotein from lysed staphylococci culture is described. 2. It is homogeneous in the ultracentrifuge and has a sedimentation constant of 650 x 10–13 cm. dyne–1 sec.–1, corresponding to a molecular weight of about 300,000,000. 3. The diffusion coefficient varies from about 0.001 cm.2/day in solutions containing more than 0.1 mg. protein/ml. to 0.02 in solutions containing less than 0.001 mg. protein/ml. The rate of sedimentation also decreases as the concentration decreases. It is suggested, therefore, that this protein exists in various sized molecules of from 500,000–300,000,000 molecular weight, the proportion of small molecules increasing as the concentration decreases. 4. This protein is very unstable and is denatured by acidity greater than pH 5.0, by temperature over 50°C. for 5 minutes. It is digested by chymo-trypsin but not by trypsin. 5. The loss in activity by heat, acid, and chymo-trypsin digestion is roughly proportional to the amount of denatured protein formed under these conditions. 6. The rate of diffusion of the protein is the same as that of the active agent. 7. The rate of sedimentation of the protein is the same as that of the active agent. 8. The loss in activity when susceptible living or dead bacteria are added to a solution of the protein is proportional to the loss in protein from the solution. Non-susceptible bacteria remove neither protein nor activity. 9. The relative ultraviolet light absorption, as determined directly, agrees with that calculated from Gates' inactivation experiments in the range of 2500–3000 Å. u. but is somewhat greater in the range of 2000–2500 Å. u. 10. Solubility determinations showed that most of the preparations contained at least two proteins, one being probably the denatured form of the other. Two preparations were obtained, however, which had about twice the specific activity of the earlier ones and which gave a solubility curve approximating that of a pure substance. 11. It is suggested that the formation of phage may be more simply explained by analogy with the autocatalytic formation of pepsin and trypsin than by analogy with the far more complicated system of living organisms.


2021 ◽  
Vol 14 (5) ◽  
pp. 411
Author(s):  
Md. Khalid Anwer ◽  
Muzaffar Iqbal ◽  
Mohammad Muqtader Ahmed ◽  
Mohammed F. Aldawsari ◽  
Mohd Nazam Ansari ◽  
...  

In the current study, the effect of poloxamer 188 on the complexation efficiency and dissolution of arbidol hydrochloride (ADL), a broad-spectrum antiviral agent, with β-cyclodextrin (β-CD) was investigated. Phase solubility studies confirmed a stoichiometry of a 1:1 ratio for both ADL:β-CD and ADL/β-CD with a 1% poloxamer 188 system with an AL type of phase solubility curve. The stability constants (K1:1) calculated from the AL type diagram were 550 M-1 and 2134 M-1 for AD:β-CD and ADL/β-CD with 1% poloxamer 188, respectively. The binary ADL/β-CD and ternary ADL/β-CD with 1% poloxamer 188 complexes were prepared by kneading and a solvent evaporation method and were characterized by aqueous solubility, FTIR, PXRD, DSC and SEM in vitro studies. The solubility (13.1 fold) and release of ADL were markedly improved in kneaded ternary ADL/β-CD with 1% poloxamer 188 (KDB). The binding affinity of ADL and β-CD was confirmed by 1H NMR and 2D ROSEY studies. The ternary complex (KDB) was further subjected for in vivo pharmacokinetic studies in rats and a significant improvement in the bioavailability (2.17 fold) was observed in comparison with pure ADL. Therefore, it can be concluded that the solubilization and bioavailability of ADL can be remarkably increased by ADL/β-CD complexation in the presence of a third component, poloxamer 188.


Author(s):  
Fikri Alatas ◽  
Fahmi Abdul Azizsidiq ◽  
Titta Hartyana Sutarna ◽  
Hestyari Ratih ◽  
Sundani Nurono Soewandhi

An effort to improve the solubility of albendazole (ABZ), an anthelmintic drug has been successfully carried out through the formation of multicomponent crystal with dl-malic acid (MAL). Construction of phase solubility curve of ABZ in MAL solution and crystal morphological observations after recrystallization in the acetone-ethanol (9:1) mixture were performed for initial prediction of multicomponent crystal formation. ABZ-MAL multicomponent crystal was prepared by wet grinding or also known as solvent-drop grinding (SDG) with acetone-ethanol (9:1) mixture as a solvent followed by characterization of the multicomponent crystal formation by powder X-ray diffraction and Fourier transform infrared (FTIR) methods. The solubility of ABZ-MAL multicomponent crystal was tested in water at ambient temperature and in pH 1.2, 4.5 and 6.8 of buffered solutions at 37°C. The phase solubility curve of the ABZ in the MAL solution showed type Bs. The ABZ-MAL mixture has a different crystalline morphology than pure ABZ and MAL after recrystallization in the acetone-ethanol mixture (9:1). The powder X-ray diffraction pattern and the FTIR spectrum of ABZ-MAL from SDG different from intact ABZ and MAL powder X-ray diffraction patterns and these results can indicate the ABZ-MAL multicomponent crystal formation. The ABZ-MAL multicomponent crystal has better solubility than pure ABZ in all media used. These results can be concluded that ABZ-MAL multicomponent crystal can be prepared by solvent-drop grinding method with acetone-ethanol (9:1) mixture as a solvent and can increase the solubility of albendazole.


2021 ◽  
Vol 39 (4) ◽  
pp. 1066-1075
Author(s):  
K.K. Adama ◽  
U.P. Onochie ◽  
E. Gbeinzi

This study presents the application of ternary phase diagrams to tropical almond biodiesel components separation and purification at two temperatures. The seed oil was extracted mechanically and alkaline transesterified to produce biodiesel. The oil and biodiesel were characterized using standard methods. Tie lines and binodal solubility curve data were determined using modified cloud point titration procedures. Gas chromatographic method was employed in the analysis of the phase compositions. The mixture of biodiesel, methanol and glycerol were investigated at 20 °C, 30 °C and withdrawal times of 2 to 32 minutes at 2 minutes intervals. Distribution coefficient, K and solvent selectivity, S analysis were performed. Results obtained showed that S > 1 indicating the ability of methanol to promote phase separation and purification. K < 1 implying that there was lower quantities of methanol solubilized in the biodiesel phase. The ternary phase diagrams provided the means of predicting the components distribution. Keywords: Production, Characterization, Tropical Almond Biodiesel, Purification, Ternary Phase Diagram


1939 ◽  
Vol 16 (4) ◽  
pp. 183
Author(s):  
Kenneth A. Kobe
Keyword(s):  

Author(s):  
H. A. Miets ◽  
Jacques Chevalier

Experiments made by Professor Miers and Miss F. Isaac have shown how, by measurements of the refractive index, it is possible to determine for a supersaturated solution the temperature at which it passes from the metastable condition, in which it can only crystallize by inoculation with a crystal of the salt (or of a substance isomorphous with it), to the labile condition, in which it may (and often does) crystallize spontaneously. In a diagram in which concentrations are taken as ordinates and temperatures a abscissae the solubility curve represents the limit between the unsaturated and the metastable state; and the limit between the metastable and the labile state is represented by a similar curve, to which they have given the name ‘Supersolubility curve’.


1— In certain metals such as Cu, hydrogen appears to be dissolved in the metal in the form of free protons, which do not affect the normal metal lattice, even when present at very considerable concentrations. In other metals such as Ti, definite metal hydrides are formed which have a different lattice structure from the pure metal. The metal Pd is intermediate since the hydrogen affects the lattice constant. It is the properties of the former group of metals which are first to be discussed here, since the fact that the normal metal lattice is (practically) unaffected seems to justify a very simple theoretical treatment of the solubility, and it is of some interest to examine how the theory compares with the facts. We shall find that we can bring the facts and the theory into satisfactory order together. The various types of solubility curve are shown in fig. 1. 2— From evidence such as the well-known p 1/2 law for the rate of diffusion of hydrogen through metals we may certainly assume that the hydrogen in the metal is atomic. For the present we shall neglect the difference between atoms of hydrogen and protons plus electrons, and merely assume that the atoms are present as such in the metal, without specific interaction with particular metallic atoms; the metal merely provides a region in which hydrogen atoms can exist and move in a definite field of potential energy. Specific contributions by the electrons of the hydrogen atoms will be considered later, when the hydrogen atoms in the metal will be considered as protons plus electrons.


Sign in / Sign up

Export Citation Format

Share Document