scholarly journals Revealing the nonlinear response of a tunneling two-level system ensemble using coupled modes

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Naftali Kirsh ◽  
Elisha Svetitsky ◽  
Alexander L. Burin ◽  
Moshe Schechter ◽  
Nadav Katz
2005 ◽  
Vol 249 (4-6) ◽  
pp. 543-551 ◽  
Author(s):  
Xiang-ming Hu ◽  
Guang-ling Cheng ◽  
Jin-hua Zou ◽  
Xing Li ◽  
Dan Du

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1543-1557 ◽  
Author(s):  
Deman Tang ◽  
Denis Kholodar ◽  
Earl H. Dowell

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 962-965
Author(s):  
Abdulmuhsen H. Ali

2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this chapter we study with the tools developed in Chapter 3 the basic models that are the foundations of light–matter interaction. We start with Rabi dynamics, then consider the optical Bloch equations that add phenomenologically the lifetime of the populations. As decay and pumping are often important, we cover the Lindblad form, a correct, simple and powerful way to describe various dissipation mechanisms. Then we go to a full quantum picture, quantizing also the optical field. We first investigate the simpler coupling of bosons and then culminate with the Jaynes–Cummings model and its solution to the quantum interaction of a two-level system with a cavity mode. Finally, we investigate a broader family of models where the material excitation operators differ from the ideal limits of a Bose and a Fermi field.


Sign in / Sign up

Export Citation Format

Share Document