scholarly journals Chloroplast RH3 DEAD Box RNA Helicases in Maize and Arabidopsis Function in Splicing of Specific Group II Introns and Affect Chloroplast Ribosome Biogenesis

2012 ◽  
Vol 159 (3) ◽  
pp. 961-974 ◽  
Author(s):  
Yukari Asakura ◽  
Erin Galarneau ◽  
Kenneth P. Watkins ◽  
Alice Barkan ◽  
Klaas J. van Wijk
2004 ◽  
Vol 102 (1) ◽  
pp. 163-168 ◽  
Author(s):  
H.-R. Huang ◽  
C. E. Rowe ◽  
S. Mohr ◽  
Y. Jiang ◽  
A. M. Lambowitz ◽  
...  

2000 ◽  
Vol 74 (21) ◽  
pp. 10081-10095 ◽  
Author(s):  
John Doorbar ◽  
Robert C. Elston ◽  
Sawsan Napthine ◽  
Kenneth Raj ◽  
Elizabeth Medcalf ◽  
...  

ABSTRACT Human papillomavirus type 16 (HPV16) infects cervical epithelium and is associated with the majority of cervical cancers. The E1∧E4 protein of HPV16 but not those of HPV1 or HPV6 was found to associate with a novel member of the DEAD box protein family of RNA helicases through sequences in its C terminus. This protein, termed E4-DBP (E4-DEAD box protein), has a molecular weight of 66,000 (66K) and can shuttle between the nucleus and the cytoplasm. It binds to RNA in vitro, including the major HPV16 late transcript (E1∧E4.L1), and has an RNA-independent ATPase activity which can be partially inhibited by E1∧E4. E4-DBP was detectable in the cytoplasm of cells expressing HPV16 E1∧E4 (in vivo and in vitro) and could be immunoprecipitated as an E1∧E4 complex from cervical epithelial cell lines. In cell lines lacking cytoplasmic intermediate filaments, loss of the leucine cluster-cytoplasmic anchor region of HPV16 E1∧E4 resulted in both proteins colocalizing exclusively to the nucleoli. Two additional HPV16 E1∧E4-binding proteins, of 80K and 50K, were identified in pull-down experiments but were not recognized by antibodies to E4-DBP or the conserved DEAD box motif. Sequence analysis of E4-DBP revealed homology in its E4-binding region with threeEscherichia coli DEAD box proteins involved in the regulation of mRNA stability and degradation (RhlB, SrmB, and DeaD) and with the Rrp3 protein of Saccharomyces cerevisiae, which is involved in ribosome biogenesis. The synthesis of HPV16 coat proteins occurs after E1∧E4 expression and genome amplification and is regulated at the level of mRNA stability and translation. Identification of E4-DBP as an HPV16 E1∧E4-associated protein indicates a possible role for E1∧E4 in virus synthesis.


RNA ◽  
2012 ◽  
Vol 18 (6) ◽  
pp. 1197-1209 ◽  
Author(s):  
A. Khrouchtchova ◽  
R.-A. Monde ◽  
A. Barkan

2020 ◽  
Author(s):  
Sofia Shevtsov-Tal ◽  
Corinne Best ◽  
Roei Matan ◽  
Sam Aldrin Chandran ◽  
Gregory G. Brown ◽  
...  

SummaryGroup II introns are large catalytic RNAs that are particularly prevalent in the organelles of terrestrial plants. In angiosperm mitochondria, group II introns reside in the coding-regions of many critical genes, and their excision is essential for respiratory-mediated functions. Canonical group II introns are self-splicing and mobile genetic elements, consisting of the catalytic intron-RNA and its cognate intron-encoded endonuclease factor (i.e. maturase, Pfam-PF01348). Plant organellar introns are extremely degenerate, and lack many regions that are critical for splicing, including their related maturase-ORFs. The high degeneracy of plant mitochondrial introns was accompanied during evolution by the acquisition of ‘host-acting’ protein cofactors. These include several nuclear encoded maturases (nMATs) and various other splicing-cofactors that belong to a diverse set of RNA-binding families, e.g. RNA helicases (Pfam-PF00910), Mitochondrial Transcription Termination Factors (mTERF, Pfam-PF02536), Plant Organelle RNA Recognition (PORR, Pfam-PF11955), and Pentatricopeptide repeat (PPR, Pfam-PF13812) proteins. Previously, we established the roles of MatR and three nuclear-maturases, nMAT1, nMAT2, and nMAT4, in the splicing of different subsets of mitochondrial introns in Arabidopsis. The function of nMAT3 (AT5G04050) was found to be essential during early embryogenesis. Using a modified embryo-rescue method, we show that nMAT3-knockout plants are strongly affected in the splicing of nad1 introns i1, i3 and i4 in Arabidopsis mitochondria. The embryo-defect phenotype is tightly associated with complex I biogenesis defects. Functional complementation of nMAT3 restored the splicing defects and altered embryogenesis phenotypes associated with the nmat3 mutant-line.


2001 ◽  
Vol 12 (10) ◽  
pp. 3046-3059 ◽  
Author(s):  
Stacey Bléoo ◽  
Xuejun Sun ◽  
Michael J. Hendzel ◽  
John M. Rowe ◽  
Mary Packer ◽  
...  

DEAD box proteins are putative RNA helicases that function in all aspects of RNA metabolism, including translation, ribosome biogenesis, and pre-mRNA splicing. Because many processes involving RNA metabolism are spatially organized within the cell, we examined the subcellular distribution of a human DEAD box protein, DDX1, to identify possible biological functions. Immunofluorescence labeling of DDX1 demonstrated that in addition to widespread punctate nucleoplasmic labeling, DDX1 is found in discrete nuclear foci ∼0.5 μm in diameter. Costaining with anti-Sm and anti-promyelocytic leukemia (PML) antibodies indicates that DDX1 foci are frequently located next to Cajal (coiled) bodies and less frequently, to PML bodies. Most importantly, costaining with anti-CstF-64 antibody indicates that DDX1 foci colocalize with cleavage bodies. By microscopic fluorescence resonance energy transfer, we show that labeled DDX1 resides within a Förster distance of 10 nm of labeled CstF-64 protein in both the nucleoplasm and within cleavage bodies. Coimmunoprecipitation analysis indicates that a proportion of CstF-64 protein resides in the same complex as DDX1. These studies are the first to identify a DEAD box protein associating with factors involved in 3′-end cleavage and polyadenylation of pre-mRNAs.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2001
Author(s):  
Jigeesha Mukhopadhyay ◽  
Georg Hausner

Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yawei Wang ◽  
Yingying Sun ◽  
Chao Shang ◽  
Lili Chen ◽  
Hongyu Chen ◽  
...  

AbstractRing1b is a core subunit of polycomb repressive complex 1 (PRC1) and is essential in several high-risk cancers. However, the epigenetic mechanism of Ring1b underlying breast cancer malignancy is poorly understood. In this study, we showed increased expression of Ring1b promoted metastasis by weakening cell–cell adhesions of breast cancer cells. We confirmed that Ring1b could downregulate E-cadherin and contributed to an epigenetic rewiring via PRC1-dependent function by forming distinct complexes with DEAD-box RNA helicases (DDXs) or epithelial-mesenchymal transition transcription factors (EMT TFs) on site-specific loci of E-cadherin promoter. DDXs-Ring1b complexes moderately inhibited E-cadherin, which resulted in an early hybrid EMT state of epithelial cells, and EMT TFs-Ring1b complexes cooperated with DDXs-Ring1b complexes to further repress E-cadherin in mesenchymal-like cancer cells. Clinically, high expression of Ring1b with DDXs or EMT TFs predicted low levels of E-cadherin, metastatic behavior, and poor prognosis. These findings provide an epigenetic regulation mechanism of Ring1b complexes in E-cadherin expression. Ring1b complexes may be potential therapeutic targets and biomarkers for diagnosis and prognosis in invasion breast cancer.


Sign in / Sign up

Export Citation Format

Share Document