scholarly journals TRANSLOCASE OF THE INNER MEMBRANE9 and 10 Are Essential for Maintaining Mitochondrial Function during Early Embryo Cell and Endosperm Free Nucleus Divisions in Arabidopsis

2014 ◽  
Vol 166 (2) ◽  
pp. 853-868 ◽  
Author(s):  
Y. Deng ◽  
W. Zou ◽  
G. Li ◽  
J. Zhao
2019 ◽  
Vol 70 (21) ◽  
pp. 6229-6244
Author(s):  
Gang Li ◽  
Wenxuan Zou ◽  
Liufang Jian ◽  
Jie Qian ◽  
Jie Zhao

Abstract Embryogenesis is an essential process during seed development in higher plants. It has previously been shown that mutation of the Arabidopsis non-SMC element genes AtNSE1 or AtNSE3 leads to early embryo abortion, and their proteins can interact with each other directly. However, the crucial regions of these proteins in this interaction and how the proteins are cytologically involved in Arabidopsis embryo development are unknown. In this study, we found that the C-terminal including the Ring-like motif of AtNSE1 can interact with the N-terminal of AtNSE3, and only the Ring-like motif is essential for binding with three α motifs of AtNSE2 (homologous to AtMMS21). Using genetic assays and by analysing molecular markers of cell fate decisions (STM, WOX5, and WOX8) in mutant nse1 and nse3 embryos, we found that AtNSE1 and AtNSE3 work non-redundantly in early embryo development, and that differentiation of the apical meristem and the hypophysis fails in the mutants, which have disrupted auxin transportation and responses. However, the upper cells of the suspensor in the mutants seem to have proper embryo cell identity. Cytological examination showed that cell death occurred from the early embryo stage, and that vacuolar programmed cell death and necrosis in the nse1 and nse3 mutant embryos led to ovule abortion. Thus, AtNSE1 and AtNSE3 are essential for maintaining cell viability and growth during early embryogenesis. Our results improve our understanding of the functions of SMC5/6 complex in early embryogenesis in Arabidopsis.


1985 ◽  
Vol 27 (2) ◽  
pp. 134-142 ◽  
Author(s):  
J. P. Gustafson ◽  
A. J. Lukaszewski

The early embryo and endosperm development patterns of five annual taxa and three perennial taxa of the genus Secale were analyzed. The results showed that there was considerable variation in the speed of early embryo and endosperm development within the genus Secale, and that the developmental patterns of the annual and perennial taxa overlapped. Comparisons indicated that DNA content per se did not have any influence on the speed of early embryo development or aberrant endosperm nucleus production in either the annual or perennial taxa. However, comparisons between the percent telomeric heterochromatin and the number of embryo cells produced showed a significant positive correlation in the annual taxa, and a nonsignificant correlation in the perennial taxa. There was a positive correlation between the number of aberrant endosperm nuclei and percent telomeric heterochromatin in the annual taxa, while the perennial taxa showed a nonsignificant but negative correlation. The results suggest that percent telomeric heterochromatin has a different effect on early seed development in the annual taxa than in the perennial taxa.Key words: Secale, heterochromatin, DNA content, embryo cell cycle.


2008 ◽  
Vol 20 (9) ◽  
pp. 61
Author(s):  
S. L. Wakefield ◽  
A. N. Filby ◽  
M. Lane ◽  
M. Mitchell

Exposure of an embryo to suboptimal environments, including poor embryo culture media or inadequate maternal diet, can disrupt fetal and placental development and whilst the exact mechanisms responsible remain unknown, perturbed embryo metabolism has been implicated. We propose that stress applied to an early embryo causes mitochondrial dysfunction, resulting in a permanent epigenetic change. Thus the aim of this study was to determine the affect of directly perturbing mitochondria in the embryo, on development, metabolism and expression of the ATP-dependant chromatin remodelling protein, ATRX. Zygotes collected from gonadotrophin stimulated C57BL/6xCBA mice were cultured to the two-cell stage and then exposed to one of three treatments; control medium (C), medium lacking pyruvate (-P; embryos dependant on the mitochondrial Malate Aspartate Shuttle, MAS) or medium lacking pyruvate plus 5µM amino-oxyacetate (AOA), a specific MAS inhibitor (-P+AOA). Blastocyst development and metabolism were assessed by determining cell number and allocation, glycolysis, and ATP:ADP ratio. Relative gene expression of ATRX, was examined using RT PCR. Embryos dependant on the MAS alone (-P) had significantly decreased blastocyst development (87.1% v. 98.2%, P < 0.05), with a compensatory increase in glycolysis (0.20 v. 0.07 pmol/cell/hr, P < 0.001) despite a decrease in ATP:ADP (0.10 v. 0.13, P < 0.06), relative to the control. Inhibition of the MAS (-P+AOA) further reduced blastocyst development,(77.3%, P < 0.001) and decreased ATP:ADP (0.08, P < 0.004), but there was no change in glycolysis relative to control embryos (0.09 pmol/cell/hr, P = 0.3). Expression of ATRX was significantly increased for –P+AOA embryos relative to the control (1.63 v. 1.0, P < 0.007) but did not differ for –P embryos (1.1). This study demonstrates that direct perturbations of mitochondrial function in the embryo compromises its metabolic regulation and blastocyst development, and the expression of the epigenetic modulator ATRX. Further studies are underway to elucidate the implications of disrupted metabolic control and this epigenetic modulator on pregnancy outcomes.


2020 ◽  
Vol 32 (6) ◽  
pp. 564 ◽  
Author(s):  
Beatriz Rodríguez-Alonso ◽  
José María Sánchez ◽  
Meriem Hamdi ◽  
Michael McDonald ◽  
Vitezslav Havlicek ◽  
...  

The aim of this study was to determine the effect of maternal–embryonic asynchrony in the reproductive tract (oviduct and uterus) on subsequent embryo development in cattle. Fifty Day 1invitro-produced zygotes were transferred endoscopically into the oviduct ipsilateral to the corpus luteum of heifers (n=40) that were either synchronous with the embryos (Day 1 after ovulation) or asynchronous and ahead of the embryo (Day 3 after ovulation). A subset of heifers was killed in a commercial abattoir 3, 6 or 14 days after embryo transfer. Location within the reproductive tract, developmental stage and the quality of embryos were recorded. Transfer of embryos to an advanced (asynchronous) oviduct resulted, on Day 4, in fewer embryos at the expected location (oviduct), and a greater number of degenerated and retarded embryos with a lower total cell number than for embryos in the synchronous group. Similarly, on Day 7, asynchrony led to a greater number of degenerated and retarded embryos compared with the synchronous group. Total embryo cell number was similar among groups. Although Day 15 conceptuses were longer following asynchronous transfer, only 50% of the asynchronous heifers yielded conceptuses, compared with 100% in the synchronous group. In conclusion, asynchrony between the developing embryo and the reproductive tract has a negative effect on embryo development.


Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1862-1871 ◽  
Author(s):  
José A. Martı́nez-M. ◽  
Susana Minguet ◽  
Pilar Gonzalo ◽  
Pilar G. Soro ◽  
Belén de Andrés ◽  
...  

Abstract Lymphohematopoietic progenitors derived from midgestation mouse embryos were established in long-term cultures with stromal cell monolayers and interleukin 7 (IL-7), giving rise to B-lineage cell lines. The initial emergence and in vitro establishment of these early embryo cell lines were highly sensitive to IL-7–mediated signals, in comparison to cell lines similarly obtained using precursors from late fetal liver (&gt; 13 days postcoitum) and adult bone marrow. The early embryo-derived progenitors spontaneously differentiated in vitro to CD19+IgM+ immature B cells in the presence of optimal concentrations of IL-7, in contrast to those progenitors obtained from late gestation and adult mice, whose differentiation only occurred in the absence of IL-7. The newly in vitro–generated B cells of the early embryo cell lines repopulated adult immunodeficient severe combined immunodeficient mice on their adoptive transfer in vivo and generated specific humoral immune responses after immunization.


PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220529 ◽  
Author(s):  
Michael Schenk ◽  
Julia Maria Kröpfl ◽  
Martina Hörmann-Kröpfl ◽  
Gregor Weiss

2005 ◽  
Vol 17 (3) ◽  
pp. 371 ◽  
Author(s):  
Michelle Lane ◽  
David K. Gardner

An inability to regulate ionic and metabolic homeostasis is related to a reduction in the developmental capacity of the embryo. The early embryo soon after fertilisation and up until compaction appears to have a reduced capacity to regulate its homeostasis. The reduced ability to regulate homeostasis, such as intracellular pH and calcium levels, by the precompaction-stage embryo appears to impact on the ability to regulate mitochondrial function and maintain adequate levels of energy production. This reduction in ATP production causes a cascade of events leading to disrupted cellular function and, perhaps ultimately, disrupted epigenetic regulation and aberrant placental and fetal development. In contrast, after compaction the embryo takes on a more somatic cell-like physiology and is better able to regulate its physiology and therefore appears less vulnerable to stress. Therefore, for human IVF it would seem important for the establishment of healthy pregnancies that the embryos are maintained in systems that are designed to minimise homeostatic stress, particularly for the cleavage-stage embryos, as exposure to stress is likely to culminate in impaired embryo function.


Author(s):  
Elizabeth S. Priori ◽  
T. Shigematsu ◽  
B. Myers ◽  
L. Dmochowski

Spontaneous release of type C virus particles in long-term cultures of mouse embryo cells as well as induction of similar particles in mouse embryo cell cultures with IUDR or BUDR have been reported. The presence of type C virus particles in cultures of normal rat embryos has not been reported.NB-1, a culture derived from embryos of a New Zealand Black (NB) rat (rats obtained from Mr. Samuel M. Poiley, N.C.I., Bethesda, Md.) and grown in McCoy's 5A medium supplemented with 20% fetal calf serum was passaged weekly. Extracellular virus particles similar to murine leukemia particles appeared in the 22nd subculture. General appearance of cells in passage 23 is shown in Fig. 1. Two budding figures and one immature type C virus particle may be seen in Fig. 2. The virus particles and budding were present in all further passages examined (currently passage 39). Various stages of budding are shown in Figs. 3a,b,c,d. Appearance of a mature virus particle is shown in Fig. 4.


Author(s):  
William Theurkauf

Cell division in eucaryotes depends on coordinated changes in nuclear and cytoskeletal components. In Drosophila melanogaster embryos, the first 13 nuclear divisions occur without cytokinesis. During the final four divisions, nuclei divide in a uniform monolayer at the surface of the embryo. These surface divisions are accompanied by dramatic changes in cortical actin and microtubule structure (Karr and Alberts, 1986), and inhibitor studies indicate that these changes are essential to orderly mitosis (Zalokar and Erk, 1976). Because the early embryo is syncytial, fluorescent probes introduced by microinjection are incorporated in structures associated with all of the nuclei in the blastoderm. In addition, the nuclei divide synchronously every 10 to 20 min. These characteristics make the syncytial blastoderm embryo an excellent system for the analysis of mitotic reorganization of both nuclear and cytoskeletal elements. However, the Drosophila embryo is a large cell, and resolution of cytoskeletal filaments and nuclear structure is hampered by out-of focus signal.


1997 ◽  
Vol 160 (1) ◽  
pp. 139-148
Author(s):  
S.B. LEICHTWEIS ◽  
C. LEEUWENBURGH ◽  
D. J. PARMELEE ◽  
R. FIEBIG ◽  
L. L. JI

Sign in / Sign up

Export Citation Format

Share Document