scholarly journals Endometriosis accelerates synchronization of early embryo cell divisions but does not change morphokinetic dynamics in endometriosis patients

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220529 ◽  
Author(s):  
Michael Schenk ◽  
Julia Maria Kröpfl ◽  
Martina Hörmann-Kröpfl ◽  
Gregor Weiss
2019 ◽  
Vol 70 (21) ◽  
pp. 6229-6244
Author(s):  
Gang Li ◽  
Wenxuan Zou ◽  
Liufang Jian ◽  
Jie Qian ◽  
Jie Zhao

Abstract Embryogenesis is an essential process during seed development in higher plants. It has previously been shown that mutation of the Arabidopsis non-SMC element genes AtNSE1 or AtNSE3 leads to early embryo abortion, and their proteins can interact with each other directly. However, the crucial regions of these proteins in this interaction and how the proteins are cytologically involved in Arabidopsis embryo development are unknown. In this study, we found that the C-terminal including the Ring-like motif of AtNSE1 can interact with the N-terminal of AtNSE3, and only the Ring-like motif is essential for binding with three α motifs of AtNSE2 (homologous to AtMMS21). Using genetic assays and by analysing molecular markers of cell fate decisions (STM, WOX5, and WOX8) in mutant nse1 and nse3 embryos, we found that AtNSE1 and AtNSE3 work non-redundantly in early embryo development, and that differentiation of the apical meristem and the hypophysis fails in the mutants, which have disrupted auxin transportation and responses. However, the upper cells of the suspensor in the mutants seem to have proper embryo cell identity. Cytological examination showed that cell death occurred from the early embryo stage, and that vacuolar programmed cell death and necrosis in the nse1 and nse3 mutant embryos led to ovule abortion. Thus, AtNSE1 and AtNSE3 are essential for maintaining cell viability and growth during early embryogenesis. Our results improve our understanding of the functions of SMC5/6 complex in early embryogenesis in Arabidopsis.


1985 ◽  
Vol 27 (2) ◽  
pp. 134-142 ◽  
Author(s):  
J. P. Gustafson ◽  
A. J. Lukaszewski

The early embryo and endosperm development patterns of five annual taxa and three perennial taxa of the genus Secale were analyzed. The results showed that there was considerable variation in the speed of early embryo and endosperm development within the genus Secale, and that the developmental patterns of the annual and perennial taxa overlapped. Comparisons indicated that DNA content per se did not have any influence on the speed of early embryo development or aberrant endosperm nucleus production in either the annual or perennial taxa. However, comparisons between the percent telomeric heterochromatin and the number of embryo cells produced showed a significant positive correlation in the annual taxa, and a nonsignificant correlation in the perennial taxa. There was a positive correlation between the number of aberrant endosperm nuclei and percent telomeric heterochromatin in the annual taxa, while the perennial taxa showed a nonsignificant but negative correlation. The results suggest that percent telomeric heterochromatin has a different effect on early seed development in the annual taxa than in the perennial taxa.Key words: Secale, heterochromatin, DNA content, embryo cell cycle.


2019 ◽  
Author(s):  
Lokesh Pimpale ◽  
Teije C. Middelkoop ◽  
Alexander Mietke ◽  
Stephan W. Grill

ABSTRACTProper positioning of cells is important for many aspects of embryonic development, tissue homeostasis, and regeneration. A simple mechanism by which cell positions can be specified is via orienting the cell division axis. This axis is specified at the onset of cytokinesis, but can be reoriented as cytokinesis proceeds. Rotatory actomyosin flows have been implied in specifying and reorienting the cell division axis in certain cases, but how general such reorientation events are, and how they are controlled, remains unclear. In this study, we set out to address these questions by investigating early Caenorhabditis elegans development. In particular, we determined which of the early embryonic cell divisions exhibit chiral counter-rotating actomyosin flows, and which do not. We follow the first nine divisions of the early embryo, and discover that chiral counter-rotating flows arise systematically in the early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify specific properties of the actomyosin cortex in the symmetric AB lineage divisions that favor chiral counter-rotating actomyosin flows of the two halves of the dividing cell. Finally, we show that these counter-rotations are the driving force of both the AB lineage spindle skew and cell reorientation events. In conclusion, we here have shed light on the physical basis of lineage-specific actomyosin-based processes that drive chiral morphogenesis during development.


2020 ◽  
Vol 33 (3-4) ◽  
pp. 143-158 ◽  
Author(s):  
Patricia Corral-Martínez ◽  
Charlotte Siemons ◽  
Anneke Horstman ◽  
Gerco C. Angenent ◽  
Norbert de Ruijter ◽  
...  

Key message In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. Abstract In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the Brassica napus microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of LEAFY COTYLEDON1-expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.


2020 ◽  
Vol 32 (6) ◽  
pp. 564 ◽  
Author(s):  
Beatriz Rodríguez-Alonso ◽  
José María Sánchez ◽  
Meriem Hamdi ◽  
Michael McDonald ◽  
Vitezslav Havlicek ◽  
...  

The aim of this study was to determine the effect of maternal–embryonic asynchrony in the reproductive tract (oviduct and uterus) on subsequent embryo development in cattle. Fifty Day 1invitro-produced zygotes were transferred endoscopically into the oviduct ipsilateral to the corpus luteum of heifers (n=40) that were either synchronous with the embryos (Day 1 after ovulation) or asynchronous and ahead of the embryo (Day 3 after ovulation). A subset of heifers was killed in a commercial abattoir 3, 6 or 14 days after embryo transfer. Location within the reproductive tract, developmental stage and the quality of embryos were recorded. Transfer of embryos to an advanced (asynchronous) oviduct resulted, on Day 4, in fewer embryos at the expected location (oviduct), and a greater number of degenerated and retarded embryos with a lower total cell number than for embryos in the synchronous group. Similarly, on Day 7, asynchrony led to a greater number of degenerated and retarded embryos compared with the synchronous group. Total embryo cell number was similar among groups. Although Day 15 conceptuses were longer following asynchronous transfer, only 50% of the asynchronous heifers yielded conceptuses, compared with 100% in the synchronous group. In conclusion, asynchrony between the developing embryo and the reproductive tract has a negative effect on embryo development.


Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1862-1871 ◽  
Author(s):  
José A. Martı́nez-M. ◽  
Susana Minguet ◽  
Pilar Gonzalo ◽  
Pilar G. Soro ◽  
Belén de Andrés ◽  
...  

Abstract Lymphohematopoietic progenitors derived from midgestation mouse embryos were established in long-term cultures with stromal cell monolayers and interleukin 7 (IL-7), giving rise to B-lineage cell lines. The initial emergence and in vitro establishment of these early embryo cell lines were highly sensitive to IL-7–mediated signals, in comparison to cell lines similarly obtained using precursors from late fetal liver (> 13 days postcoitum) and adult bone marrow. The early embryo-derived progenitors spontaneously differentiated in vitro to CD19+IgM+ immature B cells in the presence of optimal concentrations of IL-7, in contrast to those progenitors obtained from late gestation and adult mice, whose differentiation only occurred in the absence of IL-7. The newly in vitro–generated B cells of the early embryo cell lines repopulated adult immunodeficient severe combined immunodeficient mice on their adoptive transfer in vivo and generated specific humoral immune responses after immunization.


Zygote ◽  
2001 ◽  
Vol 9 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Annabelle Monnier ◽  
Julia Morales ◽  
Patrick Cormier ◽  
Sandrine Boulben ◽  
Robert Bellé ◽  
...  

Protein synthesis was analysed following fertilisation in sea urchin. Fluctuations in the accumulation of neo-synthesised proteins were observed during the first cell cycles. Accurate translation analyses were performed from lysates prepared from early embryos. The lysates readily translated endogenous pre-initiated mRNAs allowing the determination of elongation rates in the absence of re-initiation in vitro. The translation capacity of embryo lysates increased 18-fold from 0 to 90 min after fertilisation, reflecting the increase in the amount of pre-initiated mRNAs during early development. Kinetics analysis at a short time interval during the course of early development (240 min) showed an overall increase in the elongation rate (> 10-fold) which is regulated by pauses in synchrony with the cell divisions. Elongation activity in the lysates was highly sensitive to the natural polyamines, spermine (ID50 = 0.2 mM) and spermidine (ID50 = 1.8 mM), indicating high potential regulation by the intracellular level of polyamines in embryos. The regulation in the elongation changes associated with the early embryo cell divisions is discussed in the light of the physiological fluctuations in polyamine concentrations.


Sign in / Sign up

Export Citation Format

Share Document