The Role of Abscisic Acid in the Response of Two Different Wheat Varieties to Water Deficit

2009 ◽  
Vol 64 (1-2) ◽  
pp. 77-84 ◽  
Author(s):  
Hala Ezzat Mohamed ◽  
Ghada Saber M. Ismail

The changes in plant growth, transpiration rate, photosynthetic activity, plant pigments, electrolyte leakage, H2O2 content, lipid peroxidation, catalase activity and endogenous content of abscisic acid (ABA) were followed in the leaves of two wheat varieties (sakha 93 and 94) during drought stress and subsequent rehydration. Drought stress caused several inhibitory changes in the growth of both wheat varieties, particularly in sakha 94. Exogenous ABA treatment improved the growth of sakha 93 plants as indicated by a higher relative water content, transpiration rate and lower electrolyte leakage and also enhanced the growth during the recovery period. Such improvement may be the result of the induction of enzymatic (catalase) and non-enzymatic (carotenoid) systems. ABA treatment did not ameliorate the negative effect of drought on the growth of sakha 94.

2012 ◽  
Vol 58 (No. 4) ◽  
pp. 181-185 ◽  
Author(s):  
A. Bano ◽  
F. Ullah ◽  
A. Nosheen

The effect of drought stress and abscisic acid (ABA) applied at tillering stage (55 days after sowing) was compared in 2 wheat cultivars differing in drought tolerance. The activities of superoxide dismutase (SOD) and peroxidase (POD) and contents of endogenous ABA in plants were measured at 3 days of drought stress in cv. Chakwal-97 (drought tolerant) and cv. Punjab-96 (drought susceptible). ABA was applied at 10<sup>&ndash;6</sup> mol/L as presowing seed treatment for 18 h. Drought tolerant cultivar has a more efficient mechanism to scavenge reactive oxygen species as shown by a significant increase in the activity of antioxidant enzyme SOD. Under drought stress, ABA significantly increased the activities of SOD and POD, showing a significant decline on rewatering. The relative water content was significantly increased by ABA priming under drought stress in both wheat cultivars. The sensitive cultivar exhibiting lower endogenous ABA content was more responsive to ABA priming. On rewatering, the magnitude of recovery from drought stress was greater in tolerant cultivar. ABA was highly effective in improving grain weight of tolerant cultivar under drought stress. &nbsp;


2007 ◽  
Vol 145 (3) ◽  
pp. 853-862 ◽  
Author(s):  
Marina Efetova ◽  
Jürgen Zeier ◽  
Markus Riederer ◽  
Chil-Woo Lee ◽  
Nadja Stingl ◽  
...  

2020 ◽  
Vol 71 (9) ◽  
pp. 2713-2722 ◽  
Author(s):  
Haicui Xie ◽  
Jianqin Shi ◽  
Fengyu Shi ◽  
Haiyun Xu ◽  
Kanglai He ◽  
...  

Abstract Plants are routinely subjected simultaneously to different abiotic and biotic stresses, such as heat, drought, and insect infestation. Plant–insect interactions in such complex stress situations are poorly understood. We evaluated the performance of the grain aphid (Sitobion avenae) in wheat (Triticum aestivum L.) exposed to a combination of heat and drought stresses. We also performed assays of the relative water content, nutritional quality, and responses of phytohormone signaling pathways. Lower relative water content and accumulation of soluble sugars and amino acids were observed in plants exposed to combined heat and drought stress. These conditions increased abscisic acid levels in the absence of aphids, as well as leading to higher levels of jasmonate-dependent transcripts. The grain aphid infestation further increased abscisic acid levels and the abundance of jasmonic acid- and salicylic acid-dependent defenses under the combined stress conditions. Aphids reared on plants grown under drought stress alone showed lower net reproductive rates, intrinsic rates of increase, and finite rates of increase compared with aphids reared on plants in the absence of stress. The heat-treated plants also showed a decreased aphid net reproductive rate. These findings demonstrate that exposure to a combination of stresses enhances plant defense responses against aphids as well as altering nutritional quality.


1997 ◽  
Vol 122 (6) ◽  
pp. 841-848 ◽  
Author(s):  
R. Thomas Fernandez ◽  
Ronald L. Perry ◽  
James A. Flore

`Imperial Gala' apple trees (Malus ×domestica Borkh.) on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Water relations, gas-exchange parameters per unit leaf area and per tree, chlorophyll fluorescence, and leaf abscisic acid content were determined during each stress and recovery period. Whole-plant calculated gas exchange best indicated plant response to drought stress, with consistent reductions in CO2 assimilation, transpiration, and leaf conductance. Variable and maximal chlorophyll fluorescence and fluorescence quenching were not as sensitive to stress. Other fluorescence parameters showed little difference. The most consistent decreases due to stress for gas exchange per square meter were in transpiration and leaf conductance, with few differences in CO2 assimilation and fewer for mesophyll conductance, internal CO2 concentration, and water-use efficiency. Leaf water potential was consistently lower during drought stress and returned to control values upon irrigation. Leaf abscisic acid content was higher for drought-stressed trees on M.9 EMLA than control trees during the stress periods but inconsistently different for the other rootstock treatments. Trees on M.9 EMLA were least affected by drought stress, MM.111 was intermediate, and Mark was the most sensitive; these results are consistent with the growth data.


Plants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 282 ◽  
Author(s):  
Erik Chovancek ◽  
Marek Zivcak ◽  
Lenka Botyanszka ◽  
Pavol Hauptvogel ◽  
Xinghong Yang ◽  
...  

We assessed the photosynthetic responses of eight wheat varieties in conditions of a simulated heat wave in a transparent plastic tunnel for one week. We found that high temperatures (up to 38 °C at midday and above 20 °C at night) had a negative effect on the photosynthetic functions of the plants and provided differentiation of genotypes through sensitivity to heat. Measurements of gas exchange showed that the simulated heat wave led to a 40% decrease in photosynthetic activity on average in comparison to the control, with an unequal recovery of individual genotypes after a release from stress. Our results indicate that the ability to recover after heat stress was associated with an efficient regulation of linear electron transport and the prevention of over-reduction in the acceptor side of photosystem I.


1996 ◽  
pp. 131-139 ◽  
Author(s):  
Elizabeth A. Bray ◽  
Meena S. Moses ◽  
Eunsook Chung ◽  
Ryozo Imai

2005 ◽  
Vol 17 (8) ◽  
pp. 2384-2396 ◽  
Author(s):  
Chun-Peng Song ◽  
Manu Agarwal ◽  
Masaru Ohta ◽  
Yan Guo ◽  
Ursula Halfter ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 630 ◽  
Author(s):  
Yaser Hafez ◽  
Kotb Attia ◽  
Salman Alamery ◽  
Abdelhalim Ghazy ◽  
Abdullah Al-Doss ◽  
...  

The impact of biochar and chitosan on barley plants under drought stress conditions was investigated during two field experiments. Our results confirmed that drought stress negatively affected morphological and physiological growth traits of barley plants such as plant height, number of leaves, chlorophyll concentrations, and relative water content. However, electrolyte leakage (EL%), lipid peroxidation (MDA), soluble sugars, sucrose and starch contents significantly increased as a response to drought stress. Additionally, 1000 grain weight, grains yield ha−1 and biological yield significantly decreased in stressed barley plants, also anatomical traits such as upper epidermis, lower epidermis, lamina, and mesophyll tissue thickness as well as vascular bundle diameter of flag leaves significantly decreased compared with control. The use of biochar and chitosan led to significant increases in plant height, number of leaves, and chlorophyll concentrations as well as relative water content; nevertheless these treatments led to significant decreases in electrolyte leakage (EL%) and lipid peroxidation (MDA) in the stressed plants. Moreover, anatomical and yield characters of stressed barley plants were improved with application of biochar and chitosan. The results proved the significance of biochar and chitosan in alleviating the damaging impacts of drought on barley plants.


2018 ◽  
Author(s):  
Liru Cao ◽  
Xiaomin Lu ◽  
Pengyu Zhang ◽  
Lixia Ku ◽  
Guorui Wang ◽  
...  

AbstractDrought can severely limit plant growth and production. However, few studies have investigated gene expression profiles in maize during drought/re-watering. We compared drought-treated and water-sufficient maize plants by measuring their leaf relative water content, superoxide dismutase and peroxidase activities, proline content, and leaf gas exchange parameters (photosynthetic rates, stomatal conductance, and transpiration rates). We conducted RNA sequencing analyses to elucidate gene expression profiles and identify miRNAs that might be related to drought resistance. A GO enrichment analysis showed that the common DEGs (differently expressed genes) between drought-treated and control plants were involved in response to stimulus, cellular process, metabolic process, cell part, and binding and catalytic activity. Analyses of gene expression profiles revealed that 26 of the DEGs under drought encoded 10 enzymes involved in proline synthesis, suggesting that increased proline synthesis was a key part of the drought response. We also investigated cell wall-related genes and transcription factors regulating abscisic acid-dependent and -independent pathways. The expression profiles of the miRNAs miR6214-3p, miR5072-3p, zma-miR529-5p, zma-miR167e-5p, zma-miR167f-5p, and zma-miR167j-5p and their relevant targets under drought conditions were analyzed. These results provide new insights into the molecular mechanisms of drought tolerance, and may identify new targets for breeding drought-tolerant maize lines.Abbreviationsleaf relative water content: RWC, superoxide dismutase activity: SOD, peroxidase activity: POD, proline content: Pro, photosynthetic rates: Pn, stomatal conductance: Cond, transpiration rates: Tr.; quantitative real-time polymerase chain reaction: qPCR; abscisic acid; ABA; polyethylene glycol :PEG; Principal component analysis :PCA; polyacrylamide gel electrophoresis :PAGEHighlightThe study of physiology and molecular mechanism of maize laid a theoretical foundation for drought resistance breeding under drought stress and re-watering.


Sign in / Sign up

Export Citation Format

Share Document