scholarly journals Maize Histone Deacetylase hda101 Is Involved in Plant Development, Gene Transcription, and Sequence-Specific Modulation of Histone Modification of Genes and Repeats

2007 ◽  
Vol 19 (4) ◽  
pp. 1145-1162 ◽  
Author(s):  
Vincenzo Rossi ◽  
Sabrina Locatelli ◽  
Serena Varotto ◽  
Guenter Donn ◽  
Raul Pirona ◽  
...  
2020 ◽  
Vol 71 (20) ◽  
pp. 6211-6225
Author(s):  
Peter G H de Rooij ◽  
Giorgio Perrella ◽  
Eirini Kaiserli ◽  
Martijn van Zanten

Abstract Plants tightly control gene transcription to adapt to environmental conditions and steer growth and development. Different types of epigenetic modifications are instrumental in these processes. In recent years, an important role for the chromatin-modifying RPD3/HDA1 class I HDAC HISTONE DEACETYLASE 9 (HDA9) emerged in the regulation of a multitude of plant traits and responses. HDACs are widely considered transcriptional repressors and are typically part of multiprotein complexes containing co-repressors, DNA, and histone-binding proteins. By catalyzing the removal of acetyl groups from lysine residues of histone protein tails, HDA9 negatively controls gene expression in many cases, in concert with interacting proteins such as POWERDRESS (PWR), HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 15 (HOS15), WRKY53, ELONGATED HYPOCOTYL 5 (HY5), ABA INSENSITIVE 4 (ABI4), and EARLY FLOWERING 3 (ELF3). However, HDA9 activity has also been directly linked to transcriptional activation. In addition, following the recent breakthrough discovery of mutual negative feedback regulation between HDA9 and its interacting WRKY-domain transcription factor WRKY53, swift progress in gaining understanding of the biology of HDA9 is expected. In this review, we summarize knowledge on this intriguing versatile—and long under-rated—protein and propose novel leads to further unravel HDA9-governed molecular networks underlying plant development and environmental biology.


2006 ◽  
Vol 26 (5) ◽  
pp. 1770-1785 ◽  
Author(s):  
Jan-Jong Hung ◽  
Yi-Ting Wang ◽  
Wen-Chang Chang

ABSTRACT We previous reported that Sp1 recruits c-Jun to the promoter of the 12(S)-lipoxygenase gene in 12-myristate 13-acetate-treated cells. We now show that Sp1 that recruited HDAC1 to the Sp1/cJun complex was constitutively acetylated when cells were exposed to phorbol 12-myristate 13-acetate (PMA) (3 h). Prolonged stimulation of the cells with PMA (9 h), however, caused the dissociation of histone deacetylase 1 (HDAC1) and the deacetylation of Sp1, with the latter being able to recruit p300 that in turn caused the acetylation and dissociation of histone 3, thus enhancing the expression of 12(S)-lipoxygenase. We also overexpressed an Sp1 mutant (K703/A, lacking acetylation sites) in the cell and found that cells recruited more p300 and expressed more 12(S)-lipoxygenase. Taken together, our results indicated that Sp1 recruits HDAC1 together with c-Jun to the gene promoter, followed by deacetylation of Sp1 upon PMA treatment. p300 is then recruited to the gene promoter through the interaction with deacetylated Sp1 to acetylate histone 3, leading to the enhancement of the expression of 12(S)-lipoxygenase.


2003 ◽  
Vol 84 (4) ◽  
pp. 814-828 ◽  
Author(s):  
Anne-Laurence Boutillier ◽  
Emmanuelle Trinh ◽  
Jean-Philippe Loeffler

Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 4592-4600 ◽  
Author(s):  
A. K. Ho ◽  
D. M. Price ◽  
W. G. Dukewich ◽  
N. Steinberg ◽  
T. G. Arnason ◽  
...  

In this study we investigated the effect of histone acetylation on the transcription of adrenergic-induced genes in rat pinealocytes. We found that treatment of pinealocytes with trichostatin A (TSA), a histone deacetylase inhibitor, caused hyperacetylation of histone H3 (H3) Lys14 at nanomolar concentrations. Hyperacetylation of H3 was also observed after treatment with scriptaid, a structurally unrelated histone deacetylase inhibitor. The effects of TSA and scriptaid were inhibitory on the adrenergic induction of arylalkylamine-n-acetyltransferase (aa-nat) mRNA, protein, and enzyme activity, and on melatonin production. TSA at higher concentrations also inhibited the adrenergic induction of mapk phosphatase-1 (mkp-1) and inducible cAMP early repressor mRNAs. In contrast, the effect of TSA on the norepinephrine induction of the c-fos mRNA was stimulatory. Moreover, the effect of TSA on adrenergic-induced gene transcription was dependent on the time of its addition; its effect was only observed during the active phase of transcription. Chromatin immunoprecipitation with antibodies against acetylated Lys14 of H3 showed an increase in DNA recovery of the promoter regions of aa-nat, mkp-1, and c-fos after treatment with TSA. Together, our results demonstrate that histone acetylation differentially influences the transcription of adrenergic-induced genes, an enhancing effect for c-fos but inhibitory for aa-nat, mkp-1, and inducible cAMP early repressor. Moreover, both inhibitory and enhancing effects appear to be mediated through specific modification of promoter-bound histones during gene transcription.


Oncotarget ◽  
2014 ◽  
Vol 5 (12) ◽  
pp. 4257-4268 ◽  
Author(s):  
Jeyran Shahbazi ◽  
Christopher J. Scarlett ◽  
Murray D. Norris ◽  
Bing Liu ◽  
Michelle Haber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document