scholarly journals Transcriptional Regulation of Zein Gene Expression in Maize through the Additive and Synergistic Action of opaque2, Prolamine-Box Binding Factor, and O2 Heterodimerizing Proteins

2015 ◽  
Vol 27 (4) ◽  
pp. 1162-1172 ◽  
Author(s):  
Zhiyong Zhang ◽  
Jun Yang ◽  
Yongrui Wu
2001 ◽  
Vol 361 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Yukitomo ARAO ◽  
Atsumi KIKUCHI ◽  
Kazuhiro IKEDA ◽  
Satoshi NOMOTO ◽  
Hyogo HORIGUCHI ◽  
...  

Oestrogen-mediated gene expression is regulated at both the transcriptional and post-transcriptional levels. The molecular mechanism of transcriptional regulation has been well characterized. On the other hand, there is little understanding of the mechanism of post-transcriptional regulation. To clarify the mechanism of oestrogen-mediated post-transcriptional regulation, we focused on A+U-rich-element RNA-binding factor 1/heterogeneous nuclear ribonucleoprotein D (AUF1/hnRNP D), which is known as a regulator of cytosolic mRNA degradation and nuclear pre-mRNA maturation. However, little is known about the expression levels and the regulation of AUF1/hnRNP D mRNA in tissues. We further investigated the expression levels of AUF1/hnRNP D isoform mRNAs to determine whether AUF1/hnRNP D gene expression is regulated by oestrogen in the ovariectomized adult female rat uterus. Uterine AUF1/hnRNP D mRNA was induced by a single subcutaneous injection (1μg/kg) of 17β-oestradiol (E2), reaching a peak level within 6h. Furthermore, we observed that the E2-induced AUF1/hnRNP D isoform mRNAs are p45 and p40 transcripts, and that E2-mediated induction is suppressed by the oestrogen receptor antagonist ICI 182,780. Finally, using the transcriptional inhibitor actinomycin D, we confirmed that the E2-mediated increase in AUF1/hnRNP D mRNA is caused by E2-dependent AUF1/hnRNP D mRNA stabilization.


2010 ◽  
Vol 34 (8) ◽  
pp. S27-S27
Author(s):  
Jianqi Cui ◽  
Xiuying Pei ◽  
Qian Zhang ◽  
Bassel E. Sawaya ◽  
Xiaohong Lu ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
José L Ruiz ◽  
Lisa C Ranford-Cartwright ◽  
Elena Gómez-Díaz

Abstract Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Changhe Ji ◽  
Jakob Bader ◽  
Pradhipa Ramanathan ◽  
Luisa Hennlein ◽  
Felix Meissner ◽  
...  

AbstractGene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 758
Author(s):  
Sanjay Joshi ◽  
Christian Keller ◽  
Sharyn E. Perry

AGAMOUS-like 15 (AGL15) is a member of the MADS domain family of transcription factors (TFs) that can directly induce and repress target gene expression, and for which promotion of somatic embryogenesis (SE) is positively correlated with accumulation. An ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif of form LxLxL within the carboxyl-terminal domain of AGL15 was shown to be involved in repression of gene expression. Here, we examine whether AGL15′s ability to repress gene expression is needed to promote SE. While a form of AGL15 where the LxLxL is changed to AxAxA can still promote SE, another form with a strong transcriptional activator at the carboxy-terminal end, does not promote SE and, in fact, is detrimental to SE development. Select target genes were examined for response to the different forms of AGL15.


Sign in / Sign up

Export Citation Format

Share Document