Analytical and Experimental Investigations on the Transient Heat Transfer Process in Moist Wood Wool Slabs

2001 ◽  
Vol 24 (3) ◽  
pp. 211-225 ◽  
Author(s):  
Paolo Baggio ◽  
Manuela Campanale ◽  
Lorenzo Moro
Author(s):  
Daxi Xiong ◽  
Tian Tian ◽  
Victor Wong

In diesel engines, transient heat transfer in the piston/rings/liner system greatly affects the performance of the engine, such as in carbon deposit buildup, microwelding, lubricant degradation, and changing mechanical properties of the materials. The current work aims at studying the local piston/rings/liner transient heat-transfer process by incorporating real time dynamics of the rings in sufficient detail. In the present study, several techniques have been adopted to simulate the transient heat transfer process, with fully-incorporated ring dynamics. These techniques include using the model/submodel approach, local refined mesh approach, and the virtual thermal conductivity approach. The transient temperature and heat flux profiles in the piston and rings are illustrated. The results show that the relative movement of the rings greatly affects the temperature/heat flux distribution and the peak temperature in the top ring. The friction heating between the top ring and the liner is also evaluated. The analysis demonstrates that under some extreme conditions when frictional heating reaches its peak value, some heat flux directs back to enter the ring.


1984 ◽  
Vol 106 (3) ◽  
pp. 187-195 ◽  
Author(s):  
P. Dadras ◽  
W. R. Wells

A finite difference solution for the transient heat transfer during axisymmetric upset forging has been developed. The interfacial film between the die and the billet has been included in the analysis, and all modes of heat transfer have been taken into account. The results of a parallel experimental study have also been presented. The effects of geometrical and physical characteristics of the billet and the die on the heat transfer process, particularly on die heating, have been systematically investigated.


2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


2003 ◽  
Author(s):  
B. X. Wang ◽  
H. Li ◽  
X. F. Peng ◽  
L. X. Yang

The development of a numerical model for analyzing the effect of the nano-particles’ Brownian motion on the heat transfer is described. By using the Maxwell velocity distribution relations to calculate the most possible velocity of fluid molecules at certain temperature gradient location around the nano-particle, the interaction between fluid molecules and one single nano-particle is analyzed and calculated. Based on this, a syntonic system is proposed and the coupled effect that Brownian motion of nano-particles has on fluid molecules is simulated. This is used to formulate a reasonable analytic method, facilitating laboratory study. The results provide the essential features of the heat transfer process, contributed by micro-convection to be considered.


Sign in / Sign up

Export Citation Format

Share Document