Phase transformation in nanocrystalline Sm2Co17permanent magnet material

2009 ◽  
Vol 42 (4) ◽  
pp. 691-696 ◽  
Author(s):  
Xiaoyan Song ◽  
Nianduan Lu ◽  
Wenwu Xu ◽  
Zhexu Zhang ◽  
Jiuxing Zhang

Single-phase ultrafine nanocrystalline Sm2Co17, a candidate material for permanent magnets, was prepared by a novel simple route based on a home-built `oxygen-free'in situfabrication system. The as-prepared nanocrystalline Sm2Co17has the stable hexagonal Th2Ni17-type (2:17 H) crystal structure at room temperature, which is distinctly different from the conventional polycrystalline Sm2Co17having the rhombohedral Th2Zn17-type (2:17 R) crystal structure at room temperature. Phase transformations in the nanocrystalline Sm2Co17alloy were investigated systematically by a series of annealing experiments. It was found that, along with the nanograin growth in the heat-treatment process, the crystal structure of the room-temperature phase transforms from 2:17 H to 2:17 R. The magnetization behavior of Sm2Co17alloys in different structural states was characterized. The relationship between the magnetic performance and the structure characteristics was analyzed. Understanding the phase transformation of Sm2Co17nanocrystals facilitates the development of nanocrystalline Sm2Co17-type magnets for high-temperature applications.

2004 ◽  
Vol 10 (4) ◽  
pp. 470-480 ◽  
Author(s):  
B.P. Bewlay ◽  
S.D. Sitzman ◽  
L.N. Brewer ◽  
M.R. Jackson

Nb–silicide in situ composites have great potential for high-temperature turbine applications. Nb–silicide composites consist of a ductile Nb-based solid solution together with high-strength silicides, such as Nb5Si3and Nb3Si. With the appropriate addition of alloying elements, such as Ti, Hf, Cr, and Al, it is possible to achieve a promising balance of room-temperature fracture toughness, high-temperature creep performance, and oxidation resistance. In Nb–silicide composites generated from metal-rich binary Nb-Si alloys, Nb3Si is unstable and experiences eutectoid decomposition to Nb and Nb5Si3. At high Ti concentrations, Nb3Si is stabilized to room temperature, and the eutectoid decomposition is suppressed. However, the effect of both Ti and Hf additions in quaternary alloys has not been investigated previously. The present article describes the discovery of a low-temperature eutectoid phase transformation during which (Nb)3Si decomposes into (Nb) and (Nb)5Si3, where the (Nb)5Si3possesses the hP16 crystal structure, as opposed to the tI32 crystal structure observed in binary Nb5Si3. The Ti and Hf concentrations were adjusted over the ranges of 21 to 33 (at.%) and 7.5 to 33 (at.%) to understand the effect of bulk composition on the phases present and the eutectoid phase transformation.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Author(s):  
S. Kek ◽  
M. Grotepaß-Deuter ◽  
K. Fischer ◽  
K. Eichhorn

AbstractThe crystal structure of deuterated betaine arsenate, (CHThe both paraelectric and ferroelastic room-temperature phase of betaine arsenate crystallizes in space group


2002 ◽  
Vol 57 (5) ◽  
pp. 503-508 ◽  
Author(s):  
Hideta Ishihara ◽  
Keizo Horiuchi ◽  
Thorsten M. Gesing ◽  
Shi-qi Dou ◽  
J.-Christian Buhl ◽  
...  

Piperazinium tetrabromocadmate(II)-monohydrate, [C4H12N2]CdBr4 · H2O (1) crystallizes with isolated [CdBr4]2- anions, piperazinium cations, and water molecules (monoclinic, P21/c, Z = 4, a = 698.7(1), b = 1348.6(3), and c = 1432.4(3) pm, β = 92.97(3)˚ at 293 K). The crystal structure of 1 is almost the same as that reported in Inorg. Chim. Acta 187, 141 (1991). The crystal of piperazinium tetraiodocadmate(II), [C4H14N2]CdI4 (2) consists of isolated [CdI4]2- anions and piperazinium cations (orthorhombic,P212121, Z=4, a = 903.2(5), b = 1226.3(6), and c = 1307.9(7) pm at 293 K). The room temperature phase of bis(trimethylsulphonium) tetrabromocadmate( II), [(CH3)3S]2CdBr4 (3) has isolated [CdBr4]2- anions and trimethylsulphonium cations (orthorhombic, P212121, Z = 4, a = 911.3(1), b = 1329.2(2), and c = 1454.7(2) pm at 293 K).


2000 ◽  
Vol 55 (1-2) ◽  
pp. 225-229 ◽  
Author(s):  
Hideta Ishihara ◽  
Keizo Horiuchi ◽  
Thorsten M. Gesing ◽  
Shi-qi Dou ◽  
J.-Christian Buhl ◽  
...  

The temperature dependence of 127I NQR and DSC as well as the crystal structure at room temperature of the title compound were determined. This compound shows a first-order phase transition of an order-disorder type at 245 K. Eight 127I(v1:m = ±1/2 ↔ ±3/2) NQR lines of 79.57, 81.86, 82.56, 83.36, 84.68, 87.72, 88.34, and 88.86 MHz, and corresponding eight 127I(v2: m = ±3/2 ↔±5/2) NQR lines were observed at liquid nitrogen temperature. Three 127I(υi) NQR lines wfth an intensity ratio of 1:1:2 in the order of decreasing frequency were observed just above the transition point and two NQR lines except for the middle-frequency line disappeared around room temperature. This temperature behavior of NQR lines is very similar to that observed in [N(CH3)4]2Hgl4. Another first-order phase transition takes place at 527 K. The structure of the room-temperature phase was redetermined: orthorhombic, Pnma, Z = 4, a = 1342.8(3), b = 975.7(2), c = 1696.5(3) pm. The NQR result of three lines with an intensity ratio of 1:1:2 is in agreement with this structure. The thermal displacement parameters of atoms in both cations and anions are large.


1981 ◽  
Vol 36 (9) ◽  
pp. 967-974 ◽  
Author(s):  
Gerhard Fecher ◽  
Alarich Weiss ◽  
Gernot Heger

Abstract The crystal structure of the low temperature phase of anilinium bromide, C6H5NH3⊕Br⊖, was studied by neutron diffraction at T = 100 K. The refinement supports an ordered structure. The structures of the low and high temperature phases are compared and the mechanism of the phase transformation is discussed.


2004 ◽  
Vol 842 ◽  
Author(s):  
S. Kabra ◽  
H. Bei ◽  
D. W. Brown ◽  
M.A.M. Bourke ◽  
E. P. George

ABSTRACTPseudoelasticity in monocrystalline Fe3Al (23 at.% Al) was investigated by room-temperature mechanical testing along the <418> tensile and compressive axes. In tension, up to ∼10% strain is recoverable whereas only ∼5% strain is recoverable in compression. Straight, parallel, surface step lines were seen to appear/disappear as the specimens were pseudoelastically loaded/unloaded. In contrast, in the plastic region (ε >10%), wavy slip lines appeared on the specimen surfaces which did not disappear upon unloading. In-situ neutron diffraction was performed during compressive straining and the intensities of several diffraction peaks increase/decrease reversibly during loading/unloading. These changes are consistent with a deformation twin which produces large crystal rotations. They could also be indicative of a phase transformation. Unfortunately, we were able to sample only a limited range of 2θ in the present investigation and, within this range, none of the new peaks that appeared during the pseudoelastic deformation were disallowed peaks for the D03 crystal structure. Therefore we are unable at this time to distinguish between the two possible mechanisms, twinning and phase transformation.


2003 ◽  
Vol 792 ◽  
Author(s):  
X. T. Zu ◽  
F.R. Wan ◽  
S. Zhu ◽  
L. M. Wang

ABSTRACTTiNi shape memory alloy (SMA) has potential applications for nuclear reactors and its phase stability under irradiation is becoming an important topic. Some irradiation-induced diffusion-dependent phase transformations, such as amorphization, have been reported before. In the present work, the behavior of diffusion-independent phase transformation in TiNi SMA was studied by electron irradiation at room temperature. The effect of irradiation on the martensitic transformation of TiNi shape memory alloys was studied by Transmission Electron Microscopy (TEM) with in-situ observation and differential scanning calorimeter (DSC). The results of TEM and DSC measurements show that the microstructure of samples is R phase at room temperature. Electron irradiations were carried out using several different TEM with accelerating voltage of 200 kV, 300 kV, 400 kV and 1000 kV. Also the accelerating voltage in the same TEM was changed to investigate the critical voltage for the effect of irradiation on phase transformation. It was found that a phase transformation occurred under electron irradiation above 320 kV, but never appeared at 300 kV or lower accelerating voltage. Such phase transformation took place in a few seconds of irradiation and was independent of atom diffusion. The mechanism of Electron-irradiation-induced the martensitic transformation due to displacements of atoms from their lattice sites produced by the accelerated electrons.


RSC Advances ◽  
2014 ◽  
Vol 4 (25) ◽  
pp. 13195-13200 ◽  
Author(s):  
Xingwen Zhang ◽  
Hongwei Yu ◽  
Hongping Wu ◽  
Shilie Pan ◽  
Anqing Jiao ◽  
...  

A new high-temperature phase of Cd3B2O6 (β-Cd3B2O6) has been discovered and the phase transformation process between α- and β-Cd3B2O6 was investigated.


Sign in / Sign up

Export Citation Format

Share Document