Mounting of crystals for macromolecular crystallography in a free-standing thin film

1990 ◽  
Vol 23 (5) ◽  
pp. 387-391 ◽  
Author(s):  
T.-Y. Teng

A method for mounting single crystals in macromolecular crystallographic studies is described in which the crystal is suspended in a thin film. The film is formed from a mixture of the crystallization buffer and a hydrophilic viscous material, confined within a thin-wire loop by surface tension. Compared with conventional crystal mounting methods, this method greatly simplifies and speeds the mounting procedure, is well suited to shock freezing and to optical monitoring of the crystals, deforms fragile crystals less and gives a lower and more uniform background in the X-ray diffraction patterns.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lars Banko ◽  
Phillip M. Maffettone ◽  
Dennis Naujoks ◽  
Daniel Olds ◽  
Alfred Ludwig

AbstractWe apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a similarly conditioned VAE is uniquely effective at knowing what it doesn’t know: it can rapidly identify data outside the distribution it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding materials discovery and understanding XRD measurements both ‘on-the-fly’ and during post hoc analysis.


1995 ◽  
Vol 403 ◽  
Author(s):  
L. E. Depero ◽  
C. Perego ◽  
L. Sangaletti ◽  
G. Sberveglieri

AbstractStructural studies have been carried out on SnO2 multilayer thin film grown by the Rheotaxial Growth and Thermal Oxidation method on A120 3 substrates. A preliminary analysis of the X-ray diffraction patterns shows that, in addition to the Sn0 2 cassiterite phase, a strong contribution from an orthorhombic Sn02 phase is present.In the case of the 3-layer film, the orthorhombic phase is structurally and microstructurally stable after an annealing up to 32 h at 400 'C. The cation coordination is similar to that found in cassiterite, but the chains of edge-sharing [SnO6]8- octahedra run in a zig-zag fashion along the [100] direction, each straight unit containing four octahedra. The relationship between the two phases is discussed on the basis of structural simulations including twinning planes in the crystal structure.


2016 ◽  
Vol 62 (3) ◽  
pp. 395-400
Author(s):  
Paweł Grochulski ◽  
Mirosław Cygler ◽  
Brian Yates

After a successful 10 years of operation, the Canadian Macromolecular Crystallography Facility 08ID-1 beamline will undergo an upgrade to establish micro-beam capability. This paper is mostly focussed on optics and computer simulations for ray tracing of the beamline. After completion, the focussed beam at the sample will have a much smaller size of 50 × 5 μm2 (H x V), allowing measurement of X-ray diffraction patterns from much smaller crystals than possible presently. The beamline will be equipped with a fast sample changer and an ultra-low noise photon counting detector, allowing shutter-less operation of the beamline. Additionally, it will be possible to perform in-situ room-temperature experiments.


1993 ◽  
Vol 308 ◽  
Author(s):  
John S. Madsen ◽  
A. Peter Jardine

ABSTRACTThe minimum temperature for the crystallization of amorphous TiNi on substrates is of interest in developing thin-film SME material while minimizing chemical interactions with the substrate. Using 20 micron thick free standing TiNi material annealed in a vacuum furnace, X-Ray diffraction of the thin-films indicated that the crystallization occured within 20 minutes at 510°C, 490°C and 480°C. At 450°C, crystallization kinetics were significantly slower, and the foils were fulling crystallized after annealing for 7.5 hrs. To further lower the crystallization temperature, cold working of the foil by rolling was introduced and full crystallization was observed after 7.5 hours annealing at 400°C in a cold-worked foil. Cold working and annealing at 400°C and 350°C for 7.5 hrs did not observably promote lower crystallization temperatures.


2005 ◽  
Vol 475-479 ◽  
pp. 3819-3822 ◽  
Author(s):  
Shi Qiang Qian ◽  
Jian Sheng Wu

Amorphous thin Films of Ti51.78 Ni22.24Pd25.98 alloys were deposited onto 2 inch diameter n-type (100)Si wafer by r.f. magnetron sputtering. The crystallization temperature from an amorphous state to crystallization of free-standing thin film was found to be 553.1oC, but that of non-free-standing thin film on Si wafer was found to be higher from X-ray diffraction experiment. The film heated 1 h at 550 oC was partly crystallized but at 650 oC was almost whole crystallized. The film heated 1 h at 750 oC quite crystallized and some precipitation appear. Heated 50 h at 450 oC before crystallization the films would be accelerate B19' but restrain B19 formation in succeeding heat-treatment.


1984 ◽  
Vol 41 ◽  
Author(s):  
E. M. Clausen ◽  
J. J. Hren

AbstractMany forms of low temperature alumina have been identified [1]. These are collectively referred to as transitional forms. The particular form depends strongly on the starting material (e.g., hydrated, thermally oxidized, alkoxide, etc.), the impurities present, and on thermal history. Although different forms of transition alumina are sometimes referred to as phases, none can be considered a true polymorph of corundum, i.e., α-alumina. Transformations from one form to another which occur upon heating are not reversible, although they are quite reproducible [2]. These different transitional structures are therefore considered to comprise different states of reordering. Figure 1 is a compendium of powder x-ray diffraction patterns from all known transitional aluminas and several aluminum hydroxides [3]. It i.s obvious that there are several crystallographic spacings which are nearly common to all forms.


1997 ◽  
Vol 113-114 ◽  
pp. 282-285 ◽  
Author(s):  
Takashi Itoh ◽  
Shoji Nitta ◽  
Shuichi Nonomura

1998 ◽  
Vol 5 (3) ◽  
pp. 503-505
Author(s):  
D. W. Wang ◽  
H. Y. Jiang ◽  
Z. H. Wu ◽  
X. S. Wu ◽  
S. S. Jiang ◽  
...  

4B9A is a focusing and monochromatic photon beam at the BSRF, which was constructed in 1990. During the second phase of the BSRF program, the surface of the cylindrical mirror has been coated with Pt, covering the original Ni, and the monochromator has been upgraded. The maximum photon energy extends to 11 keV and the intensity has increased about tenfold with respect to the previous intensity at 6 keV. Synchrotron X-ray diffraction patterns for the Hg-1223 (HgBa2Ca2Cu3O8+δ) superconducting bulk and thin film have been measured at 1.54014 Å. Results indicate that the bulk and film can be indexed as possessing tetragonal symmetry; lattice parameters a = 3.856 Å and c = 15.851 Å for the bulk Hg-1223 compound, and a = 3.8517 Å and c = 15.8511 Å for the film. Their structures are similar.


2021 ◽  
Author(s):  
Chieh Chou ◽  
Po-Siun Wu ◽  
Hao-Hsiung Lin

Abstract Crystallinity of an 80-nm-thick bismuth thin film grown on Si(111) substrate by MBE was investigated. The highly (0003) textured Bi film contains two twinning domains with different bilayer stacking sequences. The basic lattice parameters c and a as well as b, the bilayer thickness, of the two domains were determined from a series of X-ray diffraction (XRD) measurements, and found that the differences are within 0.1% as compared with those of bulk Bi reported in literature, suggesting that the Bi film has been nearly fully relaxed. From the XRD φ-scans of asymmetric Bi (01-14), (10-15), (11-26) planes and Si (220) plane as well as selected area electron diffraction patterns and electron back scatter diffraction pole figures, we confirmed the well registration between the lattices of Si and Bi lattice, i.e. the ω angle difference between Bi[0003] and Si[111] and the φ angle different between Bi[01-14] and Si[220] are 0.056° and 0.25°, respectively, and thus concluded that the growth is a quasi-van der Waals epitaxy.


Sign in / Sign up

Export Citation Format

Share Document