Moiré patterns in electron microscopy with atomic focuser crystals

1999 ◽  
Vol 55 (3) ◽  
pp. 533-542 ◽  
Author(s):  
J. M. Cowley ◽  
Newton Ooi ◽  
R. E. Dunin-Borkowski

The periodic array of very fine cross-overs formed at the exit face of a thin `atomic focuser' crystal, illuminated by a parallel electron beam, may be used to form moiré patterns with a specimen crystal such that the structure of the specimen crystal may be derived with a resolution of better than 0.5 Å. Computer simulations of the moiré pattern formation have been made for the simple idealized case of two parallel gold-like lattices having a 10% difference in lattice constant. Moiré images are shown for the case of a small objective aperture in the viewing electron microscope such that the individual crystal lattices are not resolved and for a larger objective aperture for which the individual crystal lattices are resolved and the intensity is measured at the positions of the atoms of the atomic focuser crystal. The latter case confirms the viability of the scheme for ultra-high-resolution imaging of general specimens by use of a thin-crystal periodic atomic focuser, as previously proposed.

2017 ◽  
Vol 91 (23) ◽  
Author(s):  
Nicholas S. Eyre ◽  
Stephen M. Johnson ◽  
Auda A. Eltahla ◽  
Maria Aloi ◽  
Amanda L. Aloia ◽  
...  

ABSTRACT Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3′ untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the Wing, connector, and β-ladder domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies. IMPORTANCE Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In particular, the viral NS1 protein displayed remarkable tolerance of small insertions. This genetic flexibility enabled generation of several novel NS1-tagged reporter viruses, including an APEX2-tagged virus that we used in high-resolution imaging of NS1 localization in infected cells by electron microscopy. For the first time, this analysis revealed the localization of NS1 within viral replication factories known as “vesicle packets” (VPs), in addition to its acknowledged localization to the luminal surface of these VPs. Together, this genetic profile of DENV may be further refined and exploited in the identification of antiviral targets and the generation of reporter virus tools.


1985 ◽  
Vol 62 ◽  
Author(s):  
Tung Hsu ◽  
S. R. Nutt

ABSTRACTSurfaces of commercially grown edge-defined film-fed growth sapphire (EFG α-Al2O3) were studied in the electron microscope using both reflection electron microscopy (REM) and conventional transmission electron microscopy (TEM). The as-grown sapphire surface, ostensibly {1120}, was characterized by “rooftop” structures which were often locally periodic. These rooftop structures consisted of alternating {1120} facets and additional facets inclined a few degrees. The crystallography of the surface facets was analyzed using REM imaging of bulk specimens, and trace analysis of back-thinned plan section TEM specimens. Surface roughness was measured by stylus profilometry. and these measurements were compared to the electron microscopy observations. Fine structural features parallel to <0110> directions were also observed in both REM and TEM experiments, and these were attributed to surface steps of atomic scales.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1304 ◽  
Author(s):  
Giulio Guzzinati ◽  
Thomas Altantzis ◽  
Maria Batuk ◽  
Annick De Backer ◽  
Gunnar Lumbeeck ◽  
...  

The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.


1994 ◽  
Vol 158 ◽  
pp. 337-341
Author(s):  
R. C. Jennison

This conference is concerned with the very high resolution imaging of cosmic sources in many parts of the electromagnetic spectrum. Various techniques are now available and the equipment is often automated and highly sophisticated but the term ‘very high angular resolution’ is comparative. Many of the problems existed over forty years ago when the best resolving power was about half a degree and the two major radio ‘stars’ appeared to be point sources. Very high resolution imaging in those days was the struggle to reach one minute of arc and Hanbury Brown had set his sights on considerably better than one second of arc with the concept of the intensity interferometer. The dream was to achieve a resolving power comparable to that of optical telescopes.


1996 ◽  
Vol 11 (11) ◽  
pp. 2777-2784 ◽  
Author(s):  
S. Takeno ◽  
S. Nakamura ◽  
K. Abe ◽  
S. Komatsu

A novel mosaic-like structure in SrTiO3 thin films was discovered and characterized by means of transmission electron microscopy (TEM). The films were deposited on a (001) oriented Pt surface. The orientation relationship between SrTiO3 film and Pt substrate was determined, and four types of growth modes were revealed. These four growth modes formed four types of domains, respectively, and these domains and Pt formed peculiarly ordered interfacial structures, i.e., near coincidence site lattices. Antiphase boundaries between two adjacent domains were also observed by high-resolution imaging.


1992 ◽  
Vol 263 ◽  
Author(s):  
W.J. Chen ◽  
F.R. Chen ◽  
L.J. Chen

ABSTRACTHigh resolution transmission electron microscopy (HRTEM) has been applied to study the atomic structure of NiSi2 /(001)Si interface. Previous HRTEM result suggested that Ni atoms in the boundary core are six-fold coordinated and Si atoms are everywhere tetrahedrally coordinated. In this work, high resolution imaging technique and computer image simulation were used to study the atomic structure of NiSi2 /(001)Si interfaces and a new interface structure was found. For the new interface structure, Ni and Si atoms are also six-fold and tetrahedrally coordinated, respectively, with an extra layer of fourfold planar bonded Si atoms present at the interface.


Sign in / Sign up

Export Citation Format

Share Document