Structures of haemoglobin from woolly mammoth in liganded and unliganded states

2012 ◽  
Vol 68 (11) ◽  
pp. 1441-1449 ◽  
Author(s):  
Hiroki Noguchi ◽  
Kevin L. Campbell ◽  
Chien Ho ◽  
Satoru Unzai ◽  
Sam-Yong Park ◽  
...  

The haemoglobin (Hb) of the extinct woolly mammoth has been recreated using recombinant genes expressed inEscherichia coli. The globin gene sequences were previously determined using DNA recovered from frozen cadavers. Although highly similar to the Hb of existing elephants, the woolly mammoth protein shows rather different responses to chloride ions and temperature. In particular, the heat of oxygenation is found to be much lower in mammoth Hb, which appears to be an adaptation to the harsh high-latitude climates of the Pleistocene Ice Ages and has been linked to heightened sensitivity of the mammoth protein to protons, chloride ions and organic phosphates relative to that of Asian elephants. To elucidate the structural basis for the altered homotropic and heterotropic effects, the crystal structures of mammoth Hb have been determined in the deoxy, carbonmonoxy and aquo-met forms. These models, which are the first structures of Hb from an extinct species, show many features reminiscent of human Hb, but underline how the delicate control of oxygen affinity relies on much more than simple overall quaternary-structure changes.

Author(s):  
Takuya Yoshizawa ◽  
Junso Fujita ◽  
Haruna Terakado ◽  
Mayuki Ozawa ◽  
Natsuko Kuroda ◽  
...  

FtsZ, a tubulin-like GTPase, is essential for bacterial cell division. In the presence of GTP, FtsZ polymerizes into filamentous structures, which are key to generating force in cell division. However, the structural basis for the molecular mechanism underlying FtsZ function remains to be elucidated. In this study, crystal structures of the enzymatic domains of FtsZ from Klebsiella pneumoniae (KpFtsZ) and Escherichia coli (EcFtsZ) were determined at 1.75 and 2.50 Å resolution, respectively. Both FtsZs form straight protofilaments in the crystals, and the two structures adopted relaxed (R) conformations. The T3 loop, which is involved in GTP/GDP binding and FtsZ assembly/disassembly, adopted a unique open conformation in KpFtsZ, while the T3 loop of EcFtsZ was partially disordered. The crystal structure of EcFtsZ can explain the results from previous functional analyses using EcFtsZ mutants.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1162-C1162
Author(s):  
John Tanner

Proline utilization A (PutA) is a high-hanging fruit of X-ray crystallography. PutA is a membrane-associated bifunctional flavoenzyme that catalyzes the 4-electron oxidation of proline to glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. PutAs are challenging crystallography targets because of their long polypeptide chain length (1000-1300 residues) and multidomain architecture. In this talk, I will present new crystal structures and SAXS analysis of two PutAs. Seven high resolution crystal structures of a 1004-residue minimalist PutA were determined using Hg SIRAS phasing, and the oligomeric state and quaternary structure were determined with SAXS [1]. The structures reveal an elaborate and dynamic tunnel system featuring a 75-Å long tunnel that links the two active sites. Also, a novel mechanism-based inactivation strategy allowed the trapping of the elusive PutA-quinone complex in the crystalline state. These structures provide insight into the mechanism of substrate channeling and how the enzyme changes conformation during the catalytic cycle. I will conclude by describing the first structure of a new type of PutA that contains an additional C-terminal domain of unknown function (CTDUF) that is not present in the smaller minimalist enzyme [2]. This larger PutA reveals an unexpectedly different structural solution to the problem of sequestering the reaction intermediate.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2422
Author(s):  
Oleg Timofeev ◽  
Thorsten Stiewe

p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into “contact” and “structural” mutations, “cooperativity” mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.


1985 ◽  
Vol 366 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Ralte LALTHANTLUANGA ◽  
Henning WIESNER ◽  
Gerhard BRAUNITZER

2009 ◽  
Vol 390 (2) ◽  
pp. 196-207 ◽  
Author(s):  
Elena Seiradake ◽  
Weimin Mao ◽  
Vincent Hernandez ◽  
Stephen J. Baker ◽  
Jacob J. Plattner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document