Influence of doping on crystal growth, structure and optical properties of nanocrystalline CaTiO3: a case study using small-angle neutron scattering

2015 ◽  
Vol 48 (3) ◽  
pp. 836-843 ◽  
Author(s):  
Oindrila Mondal ◽  
Manisha Pal ◽  
Ripandeep Singh ◽  
Debasis Sen ◽  
Subhasish Mazumder ◽  
...  

The effect of dopant size (ionic radius) on the crystal growth, structure and optical properties of nanocrystalline calcium titanate, CaTiO3(CTO), have been studied using small-angle neutron scattering. X-ray diffraction, along with high-resolution transmission electron microscopy, confirms the growth of pure nanocrystalline CTO. Rietveld analysis reveals that the difference of ionic radii between dopant and host ions induces strain within the lattice, which significantly affects the lattice parameters. The induced strain, due to the difference of ionic radii, causes the shrinkage of the optical band gap, which is manifested by the redshift of the absorbance band. Mesoscopic structural analysis using scattering techniques demonstrates that the ionic radius of the dopant influences the agglomeration behaviour and particle size. A high-resolution transmission electron microscopy study reconfirms the formation of pure highly crystalline CTO nanoparticles.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 608
Author(s):  
Jinkun Lu ◽  
Haichun Jiang ◽  
Lingying Ye ◽  
Daxiang Sun ◽  
Yong Zhang ◽  
...  

The effect of aging time on the crushing performance of Al-0.5Mg-0.4Si alloy used for safety components of automobile was investigated by tensile test and crush test. Moreover, the microstructure of the alloy was investigated by transmission electron microscopy (TEM). The results show that the localized deformation ductility index, ΔAabs, which is defined as the difference between total elongation and uniform elongation, of Al-0.5Mg-0.4Si alloy is 6.5%, 7.0% and 8.5%, respectively, after being aged at 210 °C for 1, 3 and 6 h, and this tendency is the same as that of the crushing performance. The spacing of grain boundary precipitates (GBPs) from TEM results are found to be 94.9, 193.6 and 408.2 nm after being aged at 210 °C for 1, 3 and 6 h, respectively, and this tendency is same to that of ΔAabs. A mechanism about the relation between the spacing of GBPs and the ductility index ΔAabs has been proposed based on localized deformation around GBPs. With the increase of GBPs spacing, the ΔAabs increases, and the crushing performance is improved.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 510 ◽  
Author(s):  
Jianhang Shi ◽  
Yanxin Wang ◽  
Linjun Huang ◽  
Peng Lu ◽  
Qiuyu Sun ◽  
...  

A novel anhydrous preparation of silica (SiO2)-encapsulated terbium (Tb3+) complex nanoparticles has been investigated. The SiO2-Tb3+ nanoparticles are incorporated in electrospun polyvinylpyrrolidone hybrid nanofibers. Transmission electron microscopy confirms that Tb3+ complexes are uniformly and stably encapsulated in or carried by nanosilica. The influence of pH on the fluorescence of Tb3+ complexes is discussed. The properties, composition, structure, and luminescence of the resulting SiO2–Tb3+ hybrid nanoparticles are investigated in detail. There is an increase in the fluorescence lifetime of SiO2–Tb3+ nanoparticles and SiO2–Tb3+/polyvinylpyrrolidone (PVP) hybrid nanofibers compared with the pure Tb3+ complexes. Due to the enhanced optical properties, the fluorescent hybrid nanofibers have potential applications as photonic and photoluminescent materials.


1985 ◽  
Vol 62 ◽  
Author(s):  
H. P. Strunk ◽  
A. Kessler ◽  
E. Bauser

ABSTRACTPlanar defects have been detected by transmission electron microscopy in silicon epitaxial layers that have been grown from Ga solutions below 500 °C. According to fringe contrast analysis, this defect can be modelled by a plane of Ga atoms within the Si lattice. This plane forms during crystal growth due to local preferential incorporation of Ga atoms at crystallographically defined sites, that occur repetitively in the trains of monomolecular growth steps at the liquid/solid growth interface.


Sign in / Sign up

Export Citation Format

Share Document