Low-temperature powder X-ray diffraction measurements in vacuum: analysis of the thermal displacement of copper

2016 ◽  
Vol 49 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Nanna Wahlberg ◽  
Niels Bindzus ◽  
Sebastian Christensen ◽  
Jacob Becker ◽  
Ann-Christin Dippel ◽  
...  

A serious limitation of the all-in-vacuum diffractometer reported by Straasø, Dippel, Becker & Als-Nielsen [J. Synchrotron Rad.(2014),21, 119–126] has so far been the inability to cool samples to near-cryogenic temperatures during measurement. The problem is solved by placing the sample in a jet of helium gas cooled by liquid nitrogen. The resulting temperature change is quantified by determining the change in unit-cell parameter and atomic displacement parameter of copper. The cooling proved successful, with a resulting temperature of ∼95 (3) K. The measured powder X-ray diffraction data are of superb quality and high resolution [up to sinθ/λ = 2.2 Å−1], permitting an extensive modelling of the thermal displacement. The anharmonic displacement of copper was modelled by a Gram–Charlier expansion of the temperature factor. As expected, the corresponding probability distribution function shows an increased probability away from neighbouring atoms and a decreased probability towards them.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 272
Author(s):  
Seungyeol Lee ◽  
Huifang Xu ◽  
Hongwu Xu ◽  
Joerg Neuefeind

The crystal structure of moganite from the Mogán formation on Gran Canaria has been re-investigated using high-resolution synchrotron X-ray diffraction (XRD) and X-ray/neutron pair distribution function (PDF) analyses. Our study for the first time reports the anisotropic atomic displacement parameters (ADPs) of a natural moganite. Rietveld analysis of synchrotron XRD data determined the crystal structure of moganite with the space group I2/a. The refined unit-cell parameters are a = 8.7363(8), b = 4.8688(5), c = 10.7203(9) Å, and β = 90.212(4)°. The ADPs of Si and O in moganite were obtained from X-ray and neutron PDF analyses. The shapes and orientations of the anisotropic ellipsoids determined from X-ray and neutron measurements are similar. The anisotropic ellipsoids for O extend along planes perpendicular to the Si-Si axis of corner-sharing SiO4 tetrahedra, suggesting precession-like movement. Neutron PDF result confirms the occurrence of OH over some of the tetrahedral sites. We postulate that moganite nanomineral is stable with respect to quartz in hypersaline water. The ADPs of moganite show a similar trend as those of quartz determined by single-crystal XRD. In short, the combined methods can provide high-quality structural parameters of moganite nanomineral, including its ADPs and extra OH position at the surface. This approach can be used as an alternative means for solving the structures of crystals that are not large enough for single-crystal XRD measurements, such as fine-grained and nanocrystalline minerals formed in various geological environments.


2018 ◽  
Vol 233 (6) ◽  
pp. 361-370 ◽  
Author(s):  
Anna-Lena Hansen ◽  
Bastian Dietl ◽  
Martin Etter ◽  
Reinhard K. Kremer ◽  
David C. Johnson ◽  
...  

Abstract Results of combined synchrotron X-ray diffraction and pair distribution function experiments performed on the layered compound CrTe3 provide evidence for a short range structural distortion of one of the two crystallographically independent CrTe6 octahedra. The distortion is caused by higher mobility of one crystallographically distinct Te ion, leading to an unusual large Debye Waller factor. In situ high temperature X-ray diffraction investigations show an initial crystallization of a minor amount of elemental Te followed by decomposition of CrTe3 into Cr5Te8 and Te. Additional experiments provide evidence that the Te impurity (<1%) cannot be avoided. Analyses of structural changes in the temperature range 100–754 K show a pronounced anisotropic expansion of the lattice parameters. The differing behavior of the crystal axes is explained on the basis of structural distortions of the Cr4Te16 structural building units. An abrupt distortion of the structure occurs at T≈250 K, which then remains nearly constant down to 100 K. The structural distortion affects the spin exchange interactions between Cr3+ cations. A significant splitting between field-cooled (fc) and zero-field-cooled (zfc) magnetic susceptibility is observed below about 200 K. Applying a small external magnetic field results in a substantial spontaneous magnetization, reminiscent of ferro- or ferrimagnet exchange interactions below ~240 K. A Debye temperature of ~150 K was extracted from heat capacity measurements.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Sytle Antao

Synchrotron high-resolution powder X-ray diffraction (HRPXRD) and Rietveld structure refinements were used to examine the crystal structure of single phases and intergrowths (either two or three phases) in 13 samples of the helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. The helvine structure was refined in the cubic space group P4¯3n. For the intergrowths, simultaneous refinements were carried out for each phase. The structural parameters for each phase in an intergrowth are only slightly different from each other. Each phase in an intergrowth has well-defined unit-cell and structural parameters that are significantly different from the three endmembers and these do not represent exsolution or immiscibility gaps in the ternary solid-solution series. The reason for the intergrowths in the helvine-group minerals is not clear considering the similar radii, identical charge, and diffusion among the interstitial M cations (Zn2+, Fe2+, and Mn2+) that are characteristic of elongated tetrahedral coordination. The difference between the radii of Zn2+ and Mn2+ cations is 10%. Depending on the availability of the M cations, intergrowths may occur as the temperature, pressure, fugacity fS2, and fluid composition change on crystallization. The Be–Si atoms are fully ordered. The Be–O and Si–O distances are nearly constant. Several structural parameters (Be–O–Si bridging angle, M–O, M–S, average <M–O/S>[4] distances, and TO4 rotational angles) vary linearly with the a unit-cell parameter across the series because of the size of the M cation.


1989 ◽  
Vol 169 ◽  
Author(s):  
Winnie Wong‐Ng ◽  
Lawrence P. Cook ◽  
Michael D. Hill ◽  
Boris Paretzkin ◽  
E.R. Fuller

AbstractThe influence of the ionic size of the lanthanides R on melting relations of Ba2RCu3O6+x, where R=Y, Eu and Nd, was studied and compared with that of a high Tc superconductor mixed‐lanthanide phase Ba2(Y.75Eu.125Nd 125)Cu3O6+xThese materials have been characterized by a variety of methods including differential thermogravimetric analysis (DTA), scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) and X‐ray powder diffraction. Single phase samples of Ba2(Y.75Eu.125Nd.125)Cu3O6+x were annealed at 1004, 1040, 1052, 1060, 1078, 1107 and 1160°C and quenched into a helium gas container cooled by liquid nitrogen. The SEM micrographs of these samples showed the progressive chnages in features of the microstructures from sintering and grain growth through melting and then recrystallization from the melt. The addition of the SEM technique in conjunction with X‐ray diffraction has been helpful in the study of phase equilibria in this system.


2018 ◽  
Vol 6 (35) ◽  
pp. 17171-17176 ◽  
Author(s):  
Lasse Rabøl Jørgensen ◽  
Jiawei Zhang ◽  
Christian Bonar Zeuthen ◽  
Bo Brummerstedt Iversen

The thermal stability of the high performance n-type Te-doped Mg3Sb1.5Bi0.5 system is investigated.


1987 ◽  
Vol 2 (4) ◽  
pp. 225-226
Author(s):  
Peter Bayliss ◽  
Slade St. J. Warne

AbstractMagnesium-chlorophoenicite may be differentiated from the Mn-analogue chlorophoenicite, because for magnesium-chlorophoenicite at 7Å, whereas for chlorophoenicite.In a review of the literature for the Mineral Powder Diffraction File by Bayliss et al. (1980), powder X-ray diffraction data could not be found of the mineral species magnesium-chlorophoenicite, (Mg,Mn)3Zn2(AsO4)(OH,O)6. Dunn (1981) states that the powder X-ray diffraction data of magnesium-chlorophoenicite is essentially identical to that of chlorophoenicite (Mn analogue) and confirms that the minerals are isostructural.With the crystal structure parameters determined by Moore (1968) for a Harvard University specimen from New Jersey of chlorophoenicite, a powder X-ray diffraction pattern was calculated with the programme of Langhof, Physikalische Chemie Institute, Darmstadt. The calculated pattern was used to correct and complete the indexing of the powder X-ray diffraction data of chlorophoenicite specimen ROM M15667 from Franklin, Sussex County, New Jersey, U.S.A. by the Royal Ontario Museum (PDF 25-1159). With the correctly indexed data of ROM M15667, the unitcell parameters were refined by least-squares analysis and are listed in Table 1.The most magnesium-rich magnesium-chlorophoenicite found in the literature is a description of Harvard University specimen 92803 from Franklin, Sussex County, New Jersey, U.S.A. by Dunn (1981), where Mg is slightly greater than Mn. A 114.6 mm Debye-Schemer film taken of HU92803 with Cu radiation and a Ni filter (CuKα = 1.5418Å) was obtained from Dr. P. Dunn and measured visually. The unit-cell parameters, which were refined by least-squares analysis starting from the unit-cell parameters of PDF 25-1159 in space group C2/m(#12), are listed in Table 1, and give F28 = 4.1(0.050,136) by the method of Smith & Snyder (1979).The hkl, dcalulated, dobserved and relative intensities (I/I1) of HU92803 are presented in Table 2. With the atomic positions and temperature factors of chlorophoenicite determined by Moore (1968), the Mn atomic positions occupied by 50% Mg and 50% Mn, and the unit-cell parameters of HU92803, a powder X-ray diffraction pattern was calculated and Icalculated is recorded in Table 2. A third powder X-ray diffraction pattern was calculated with the Mn atomic positions fully occupied by Mg. Because the atomic scattering factor of Mn is more than twice greater than Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the calculated intensities of the first three reflections given in Table 3.Although the a, c and β unit-cell parameters of chlorphoenicite are similar to those of magnesium-chlorphoenicite, the b unit-cell parameter of chlorophoenicite is significantly greater than that of magnesium-chlorophoenicite (Table 1). The b unit-cell parameter represents the 0–0 distance of the Mn octahedra (Moore, 1968). Since the size of Mn is greater than that of Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the b unit-cell parameter given in Table 1.American Museum of Natural History (New York, N.Y., U.S.A.) specimen 28942 from Sterling Hill, Ogdensburg, New Jersey is composed of willemite, haidingerite and magnesian chlorophoenicite. A spectrographic analysis of the magnesian chlorophoenicite shows As, Mg, Mn and Zn. Powder X-ray diffraction data (PDF 34-190) of the magnesian chlorophoenicite was collected by diffractometer with Cu radiation and a graphite 0002 monochromator (Kα1 = 1.5405) at a scanning speed of 0.125° 2θ per minute. The unit-cell parameters, which were refined by leastsquares analysis starting from the unit-cell parameters of PDF 25-1159, are given in Table 1. Specimen AM 28942 is called chlorophoenicite, because of its large b unit-cell parameter (Table 1), and the I/I1 of 25 for reflection 001 and of 50 for reflection 201 compared to the Icalculated in Table 3.


2013 ◽  
Vol 29 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Sytle M. Antao ◽  
Allison M. Klincker

The structure of a birefringent andradite–grossular sample was refined using single-crystal X-ray diffraction (SCD) and synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate a homogeneous composition of {Ca2.88Mn2+0.06Mg0.04Fe2+0.03}Σ3[Fe3+1.29Al0.49Ti4+0.17Fe2+0.06]Σ2(Si2.89Al0.11)Σ3O12. The Rietveld refinement reducedχ2 = 1.384 and overallR(F2) = 0.0315. The HRPXRD data show that the sample contains three phases. For phase-1, the weight %, unit-cell parameter (Å), distances (Å), and site occupancy factor (sof) are 62.85(7)%,a = 12.000 06(2), average <Ca–O> = 2.4196, Fe–O = 1.9882(5), Si–O = 1.6542(6) Å, Ca(sof) = 0.970(2), Fe(sof) = 0.763(1), and Si(sof) = 0.954(2). The corresponding data for phase-2 are 19.14(9)%,a = 12.049 51(2), average <Ca–O> = 2.427, Fe–O = 1.999(1), Si–O = 1.665(1) Å, Ca(sof) = 0.928(4), Fe(sof) = 0.825(3), and Si(sof) = 0.964(4). The corresponding data for phase-3 are 18.01(9)%,a = 12.019 68(3), average <Ca–O> = 2.424, Fe–O = 1.992(2), Si–O = 1.658(2) Å, Ca(sof) = 0.896(5), Fe(sof) = 0.754(4), and Si(sof) = 0.936(5). The fine-scale coexistence of the three phases causes strain that arises from the unit-cell and bond distances differences, and gives rise to strain-induced birefringence. The results from the SCD are similar to the dominant phase-1 obtained by the HRPXRD, but the SCD misses the minor phases.


2012 ◽  
Vol 26 (18) ◽  
pp. 1250118 ◽  
Author(s):  
M. GHASEMIFARD ◽  
GH. H. KHORRAMI

The three-dimensional atomic-scale structure around Mg , Nb , Ti and Zr atoms in a series ferroelectric material such as PMN, PZT, PMN-PZT and PMN-PT has been studied using X-ray diffraction ( MoK α), Rietveld refinement and the atomic pair distribution function (PDF) technique. The structure and particle size of the powders was determined by X-ray diffraction and TEM observation. The studies show that the materials are disordered at nanometer length distances. The three-dimensional atomic ordering in PMN-based nanopowders may well be described by a cubic structure of the perovskite type, similar to that occurring in the bulk crystals. At the end, the analyzed data show that the sizes of ZrO 6 octahedral are larger than TiO 6 octahedral.


Sign in / Sign up

Export Citation Format

Share Document