Structural phase transition in polycrystalline SnSe: a neutron diffraction study in correlation with thermoelectric properties

2016 ◽  
Vol 49 (6) ◽  
pp. 2138-2144 ◽  
Author(s):  
F. Serrano-Sánchez ◽  
N. M. Nemes ◽  
O. J. Dura ◽  
M. T. Fernandez-Diaz ◽  
J. L. Martínez ◽  
...  

SnSe has been recently reported as a promising and highly efficient thermoelectric intermetallic alloy. The present material has been prepared by arc melting, as mechanically robust pellets, consisting of highly oriented polycrystals. The evolution of its orthorhombic GeS-type structure (space groupPnma) and phase transition to TlI-type structure (space groupCmcm) at high temperature has been studiedin situby neutron powder diffraction (NPD) in the temperature range 295–873 K. This transition has been identified by differential scanning calorimetry measurements, yielding sharp peaks at 795 K. In addition, thermal transport properties were measured in a similar temperature range, and large Seebeck coefficients, as high as 1050 µV K−1at 625 K, were found. The analysis from NPD data demonstrates an almost perfect stoichiometry, Sn0.998(8)Se, that does not evolve with temperature, and a progressive decrease of the anharmonicity of the chemical bonds upon entering the domain of theCmcmstructure.

2018 ◽  
Vol 51 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Federico Serrano-Sánchez ◽  
Norbert M. Nemes ◽  
José Luis Martínez ◽  
Oscar Juan-Dura ◽  
Marco Antonio de la Torre ◽  
...  

Thermoelectric materials are expected to become new alternative sources of sustainable energy. Among them, the SnSe intermetallic alloy has been described as an excellent thermoelectric compound, characterized by an extremely low thermal conductivity with maximum performance at the onset of a structural phase transition at 800 K. Recently, novel SnSe derivatives with Ge substitution have been synthesized by a direct arc-melting technique. This produces nanostructured polycrystalline samples that exhibit a record high Seebeck coefficient, anticipating an excellent performance above room temperature. Here, the structural phase transition from a GeS-type structure (space groupPnma) to a TlI-type structure (space groupCmcm) is investigatedin situ vianeutron powder diffraction (NPD) in the temperature range 298–853 K for the selected composition Sn0.8Ge0.2Se. This transition takes place at 803 K, as shown by differential scanning calorimetry. The analysis from the NPD data shows a non-monotonic behaviour of the anisotropic displacement parameters upon entering the domain of theCmcmstructure. The energies of the atomic vibrations have been quantitatively analysed by fitting the temperature-dependent mean-square displacements to Einstein oscillators. The thermal conductivity of Sn0.8Ge0.2Se is as low as 0.35 W m−1 K−1at 773 K, which mostly represents the lattice thermal contribution.


1981 ◽  
Vol 36 (8) ◽  
pp. 917-921 ◽  
Author(s):  
Hans-Otto Cullmann ◽  
Heinz-Walter Hinterkeuser ◽  
Hans-Uwe Schuster

Abstract The ternary compound β-Li2ZnGe was prepared and its structure determined from powder and single crystal data. The compound crystallizes in a modified Na3As type structure, space group Ṗ̇̇̇̇̇̇̇̇̇̇̇̇̇̇3̄m 1 - D33d.The cell parameters are: a = 432.6 pm, c = 1647.0 pm, c/a= 3.83.A phase transition between a-and β-Li2ZnGe was found and the reaction of the elements lithium, zinc and germanium to a-Li2ZnGe was followed by differential thermal analysis. The temperatures and the enthalpies of transition and fusion were determined.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Myroslava Horiacha ◽  
Galyna Nychyporuk ◽  
Rainer Pöttgen ◽  
Vasyl Zaremba

Abstract Phase formation in the solid solution TbNiIn1−x Ga x at 873 K was investigated in the full concentration range by means of powder X-ray diffraction and EDX analysis. The samples were synthesized by arc-melting of the pure metals with subsequent annealing at 873 K for one month. The influence of the substitution of indium by gallium on the type of structure and solubility was studied. The solubility ranges have been determined and changes of the unit cell parameters were calculated on the basis of powder X-ray diffraction data: TbNiIn1–0.4Ga0–0.6 (ZrNiAl-type structure, space group P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74461(8)–0.72711(17) and c = 0.37976(5)–0.37469(8) nm); TbNiIn0.2–0Ga0.8–1.0 (TiNiSi-type structure, space group Pnma, а = 0.68950(11)–0.68830(12), b = 0.43053(9)–0.42974(6), с = 0.74186(10)–0.73486(13) nm). The crystal structures of TbNiGa (TiNiSi type, Pnma, a = 0.69140(5), b = 0.43047(7), c = 0.73553(8) nm, wR2=0.0414, 525 F 2 values, 21 variables), TbNiIn0.83(1)Ga0.17(1) (ZrNiAl type, P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74043(6), c = 0.37789(3) nm, wR2 = 0.0293, 322 F 2 values, 16 variables) and TbNiIn0.12(2)Ga0.88(2) (TiNiSi type, Pnma, a = 0.69124(6), b = 0.43134(9), c = 0.74232(11) nm, wR2 = 0.0495, 516 F 2 values, 21 variables) have been determined. The characteristics of the solid solutions and the variations of the unit cell parameters are briefly discussed.


2010 ◽  
Vol 43 (5) ◽  
pp. 1031-1035 ◽  
Author(s):  
Heng-Yun Ye ◽  
Hong-Ling Cai ◽  
Jia-Zeng Ge ◽  
Ren-Gen Xiong

Pyridinium-4-carboxylic acid perchlorate (C6H6NO2·ClO4) was synthesized and separated as crystals. Differential scanning calorimetry measurement shows that this compound undergoes a reversible phase transition at about 122 K with a heat hysteresis of 1.8 K. A dielectric anomaly observed at 127 K further confirms the phase transition. The low-temperature (LT;T= 103 K) structure has space groupP21/cand cell parametersa= 17.356 (6),b= 13.241 (3),c= 16.161 (7) Å, β = 138.055 (17)°. The high-temperature (HT;T= 298 K) structure has space groupP21/cand cell parametersa= 5.5046 (11),b= 13.574 (3),c= 11.834 (2) Å, β = 99.35 (3)°, but can be re-described using new axesa′ =a,b′ =b,c′ = −2a+c,V′ =Vto give the cella′ = 5.5046 (11),b′ = 13.574 (3),c′ = 17.424 (3) Å, β′ = 137.92 (3)° and space groupP21/c. The associated coordinate transformation isx′ =x+ 2z,y′ =y,z′ =zand the associated reflection index transformation ish′ =h,k′ =k,l′ =l− 2h. The relationship between the two cells is 3a,b,c(HT) approximatesa,b,c(LT). The crystal comprises one-dimensional hydrogen-bonded chains of the pyridinium-4-carboxylic acid cations and perchlorate anions. A precise analysis of the main packing and structural differences as well as the changes in the intermolecular interactions between the HT phase and the LT phase reveals that the disorder–order transition of the perchlorate anions may be the driving force of the transition, and the hydrogen-bonding effect may contribute to the transition as a secondary parameter.


2018 ◽  
Vol 96 (2) ◽  
pp. 216-224 ◽  
Author(s):  
C. Yamcicier ◽  
Z. Merdan ◽  
C. Kurkcu

An ab initio constant pressure study is carried out to explore the behaviour of cadmium sulfide (CdS) under high hydrostatic pressure. We have studied the structural properties of CdS using density functional theory (DFT) under pressure up to 200 GPa. CdS crystallizes in a wurtzite (WZ)-type structure under ambient conditions. CdS undergoes a structural phase transition from the hexagonal WZ-type structure with space group P63mc to cubic NaCl-type structure with space group [Formula: see text]. Another phase transition is obtained from NaCl-type structure to the orthorhombic CdS-III-type structure with space group Pmmn. The first transformation proceeds via seven intermediate states with space group Cmc21, P21, Pmn21, P21/m, Pmmn, I4/mmm, and Cmcm. The latter transformation is based on two intermediate states with space groups Immm and P21/m. These phase transitions are also studied by total energy and enthalpy calculations. According to these calculations, the phase transformations occur at about 3 and 51 GPa, respectively. Calculation results on the other basic properties, such as lattice constant, volume, and bulk modulus are also compared with those of other recent theoretical and experimental data, and generally, good agreement with the available data are obtained.


2020 ◽  
Vol 75 (4) ◽  
pp. 393-402 ◽  
Author(s):  
Eva M. Heppke ◽  
Stefan Berendts ◽  
Martin Lerch

AbstractAg2CdSnS4 was synthesized by a two step mechanochemical synthesis route. From a detailed analysis of the observed reflections in the X-ray powder diffraction pattern, the crystal structure proposed in the literature (space group Cmc21 [E. Parthé, K. Yvon, R. H. Deitch, Acta Crystallogr.1969, B25, 1164–1174; O. V. Parasyuk, I. D. Olekseyuk, L. V. Piskach, S. V. Volkov, V. I. Pekhnyo, J. Alloys Compd.2005, 399, 173–177]) is questionable. Our structural investigations presented in this contribution point to the fact that Ag2CdSnS4 crystallizes in the monoclinic wurtzkesterite-type structure (space group Pn). At around T = 200°C, a phase transition to the orthorhombic wurtzstannite-type structure (space group Pmn21) is observed.


Author(s):  
Yuan Chen ◽  
Yang Liu ◽  
Binzu Gao ◽  
Chuli Zhu ◽  
Zunqi Liu

Two novel inorganic–organic hybrid supramolecular assemblies, namely, (4-HNA)(18-crown-6)(HSO4) (1) and (4-HNA)2(18-crown-6)2(PF6)2(CH3OH) (2) (4-HNA = 4-nitroanilinium), were synthesized and characterized by infrared spectroscopy, single X-ray diffraction, differential scanning calorimetry (DSC), and temperature-dependent dielectric measurements. The two compounds underwent reversible phase transitions at about 255 K and 265 K, respectively. These phase transitions were revealed and confirmed by the thermal anomalies in DSC measurements and abrupt dielectric anomalies during heating. The phase transition may have originated from the [(4-HNA)(18-crown-6)]+ supramolecular cation. The inorganic anions tuned the crystal packings and thus influenced the phase-transition points and types. The variable-temperature X-ray diffraction data for crystal 1 revealed the occurrence of a phase transition in the high-temperature phase with the space group of P21/c and in the low-temperature phase with the space group of P21/n. Crystal 2 exhibited the same space group P21/c at different temperatures. The results indicated that crystals 1 and 2 both underwent an iso-structural phase transition.


2020 ◽  
Vol 75 (11) ◽  
pp. 895-901
Author(s):  
Fabian Eustermann ◽  
Matthias Eilers-Rethwisch ◽  
Maximilian K. Reimann ◽  
Oliver Janka

AbstractThe intermetallic solid solution CePd1−xAuxAl (x = 0.1–0.9) has been synthesized from the elements by arc-melting and subsequent annealing in induction followed by tube furnaces. The samples were characterized using the Guinier powder diffraction technique and the structures of the nominal compositions CeAuAl and CePd0.2Au0.8Al were refined from single crystal X-ray diffractometer data. For small values of x = 0.1–0.3, the compounds crystallize in the hexagonal ZrNiAl-type structure (space group P$‾{6}$2m), while for x = 0.5–0.9 the orthorhombic TiNiSi-type structure (space group Pnma) was observed. In both structure types, the transition metal and aluminum atoms form a complex polyanionic network with the cerium atoms filling the respective cavities. The transition metal atoms are in both cases surrounded in the shape of a tri-capped trigonal prism, the connectivity of these units, however, is different. Temperature-dependent magnetic susceptibility measurements of all compounds indicated a stable trivalent oxidation state for the cerium atoms along with antiferromagnetic ordering around TN ∼ 3 K.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 709-713
Author(s):  
Nataliya Dominyuk ◽  
Vasyl’ I. Zaremba ◽  
Rainer Pöttgen

AbstractSingle crystals of La5Ir1.73In4.27 were grown from a sample of the starting composition 47La: 17Ir: 36 In by arc-melting, followed by a long annealing sequence in a muffle furnace. La5Ir1.73In4.27 crystallizes with the Lu5Ni2In4-type structure, space group Pbam, which was refined from single-crystal X-ray diffractometer data: a = 834.0(2), b = 1862.2(4), c = 385.31(8) pm, wR2 = 0.0278, 1165 F2 values and 37 variables. The 4h iridium site shows a small degree of Ir/In mixing. Geometrically one can describe the La5Ir1.73In4.27 structure as a simple 4:1 intergrowth variant of CsCl and AlB2-related slabs. The iridium and indium atoms form a one-dimensional meandering [Ir1.73In4.27]δ– polyanion (292 pm Ir–In and 327 pm In–In) which is embedded in a lanthanum matrix.


Author(s):  
Ekaterina S. Smirnova ◽  
Olga A. Alekseeva ◽  
Alexander P. Dudka ◽  
Vladimir V. Artemov ◽  
Yan V. Zubavichus ◽  
...  

An accurate X-ray diffraction study of (Y0.95Bi0.05)Fe3(BO3)4single crystals in the temperature range 90–500 K was performed on a laboratory diffractometer and used synchrotron radiation. It was established that the crystal undergoes a diffuse structural phase transition in the temperature range 350–380 K. The complexity of localization of such a transition over temperature was overcome by means of special analysis of systematic extinction reflections by symmetry. The transition temperature can be considered to beTstr≃ 370 K. The crystal has a trigonal structure in the space groupP3121 at temperatures of 90–370 K, and it has a trigonal structure in the space groupR32 at 375–500 K. There is one type of chain formed by the FeO6octahedra along thecaxis in theR32 phase. When going into theP3121 phase, two types of nonequivalent chains arise, in which Fe atoms are separated from the Y atoms by a different distance. Upon lowering the temperature from 500 to 90 K, a distortion of the Y(Bi)O6, FeO6, B(2,3)O3coordination polyhedra is observed. The distances between atoms in helical Fe chains and Fe—O—Fe angles change non-uniformly. A sharp jump in the equivalent isotropic displacement parameters of O1 and O2 atoms within the Fe—Fe chains and fluctuations of the equivalent isotropic displacement parameters of B2 and B3 atoms were observed in the region of structural transition as well as noticeable elongation of O1, O2, B2, B3, Fe1, Fe2 atomic displacement ellipsoids. It was established that the helices of electron density formed by Fe, O1 and O2 atoms may be structural elements determining chirality, optical activity and multiferroicity of rare-earth iron borates. Compression and stretching of these helices account for the symmetry change and for the manifestation of a number of properties, whose geometry is controlled by an indirect exchange interaction between iron cations that compete with the thermal motion of atoms in the structure. Structural analysis detected these changes as variations of a number of structural characteristics in thecunit-cell direction, that is, the direction of the helices. Structural results for the local surrounding of the atoms in (Y0.95Bi0.05)Fe3(BO3)4were confirmed by EXAFS and Mössbauer spectroscopies.


Sign in / Sign up

Export Citation Format

Share Document