scholarly journals Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthwormLumbricus terrestris

2013 ◽  
Vol 21 (1) ◽  
pp. 235-241 ◽  
Author(s):  
Loredana Brinza ◽  
Paul F. Schofield ◽  
Mark E. Hodson ◽  
Sophie Weller ◽  
Konstantin Ignatyev ◽  
...  

The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the CaK-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthwormLumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


2007 ◽  
Vol 561-565 ◽  
pp. 1225-1228
Author(s):  
Takayuki Ohba

With the highest brilliance synchrotron radiation X-ray (SPring-8) and TEM observations, Cu oxides ranged 2-nm to 10-nm in thickness formed on sputtered Cu has been evaluated. For the plasma-assisted Cu oxide, weak Cu2O and/or CuO X-ray diffraction pattern is observed, while no diffraction pattern in native and thermally (170°C) grown oxides. Those native and thermal oxides show Cu2O coordination observed by XANES (X-ray Absorption Near Edge Structure) method. This suggests that Cu oxide formed at low temperatures consists of stoichiometric Cu2O in an amorphous structure. According to the Fowler-Nordheim (F-N) current emission model, the current emission taking place at Cu2O decreases with increasing of the oxide thickness and its mean barrier height (φB) in the MIM band structure. In case of current density at 106A/cm2 of 1V, it is estimated that the allowable thickness of Cu oxides is approximately 1.5-nm at 1 eV of barrier height.


2012 ◽  
Vol 20 (1) ◽  
pp. 166-171
Author(s):  
Vasil Koteski ◽  
Jelena Belošević-Čavor ◽  
Petro Fochuk ◽  
Heinz-Eberhard Mahnke

The lattice relaxation around Ga in CdTe is investigated by means of extended X-ray absorption spectroscopy (EXAFS) and density functional theory (DFT) calculations using the linear augmented plane waves plus local orbitals (LAPW+lo) method. In addition to the substitutional position, the calculations are performed for DX- and A-centers of Ga in CdTe. The results of the calculations are in good agreement with the experimental data, as obtained from EXAFS and X-ray absorption near-edge structure (XANES). They allow the experimental identification of several defect structures in CdTe. In particular, direct experimental evidence for the existence of DX-centers in CdTe is provided, and for the first time the local bond lengths of this defect are measured directly.


1989 ◽  
Vol 44 (3) ◽  
pp. 189-194
Author(s):  
P. Kizler ◽  
P. Lamparter ◽  
S. Steeb

Xanes spectra of the amorphous Fe80B20- and Ni80B20-alloys have been investigated using the electron multiple scattering theory of Durham et al. The calculations were based on several models for the structure of amorphous Fe80B20 and Ni80B20. Very good agreement between theoretical and experimental XANES curves was met. Opposite to former expectations for obtaining information on bond angles by XANES, this study shows that XANES points to more complex features of the structure than can be expressed in terms of bond angles.


2005 ◽  
Vol 480-481 ◽  
pp. 21-26 ◽  
Author(s):  
L.J. Skipper ◽  
F.E. Sowrey ◽  
D.M. Pickup ◽  
R.J. Newport ◽  
K.O. Drake ◽  
...  

The formation of a carbonate-containing hydroxyapatite, HCAp, layer on bioactive calcium silicate sol-gel glass of the formula (CaO)0.3(SiO2)0.7 has been studied in-vitro in Simulated Body Fluid (SBF). Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES), X-ray diffraction (XRD), and solid state nuclear magnetic resonance (NMR) measurements have been performed with results showing the formation of a significantly amorphous HCAp layer after less than 5 hours in solution.


2016 ◽  
Vol 4 (18) ◽  
pp. 6946-6954 ◽  
Author(s):  
E. N. K. Glover ◽  
S. G. Ellington ◽  
G. Sankar ◽  
R. G. Palgrave

The nature and effects of rhodium and antimony doping in TiO2 have been investigated using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES) and diffuse reflectance spectroscopy.


2018 ◽  
Vol 42 (3) ◽  
pp. 166-169 ◽  
Author(s):  
Mojtaba Amini ◽  
Sakine Ramezani ◽  
Alireza Pourvahabi Anbari ◽  
Abolghasem Beheshti ◽  
Sanjeev Gautam ◽  
...  

Cuprous oxide (Cu2O) nanoparticles were prepared by two simple methods and their structural, morphological and electronic properties were investigated by X-ray diffraction analysis, X-ray absorption near-edge structure, energy dispersive X-ray analysis and scanning electron microscopy. Cuprous oxide nanoparticles efficiently catalyse 1,3-dipolar cycloaddition of a variety terminal alkynes and organic azides producing the corresponding 1,2,3-triazole derivatives in excellent yields without use of any additives. Phenylacetylene and benzyl chloride were chosen as model starting compounds for the optimisation of the reaction conditions, such as effect of solvent, reaction temperature and time of reaction in the presence of a-Cu2O nanoparticles as a catalyst. The results showed that using cuprous oxide nanoparticles (0.035 mmol) and heating at 70 °C in water, the reaction of phenylacetylene with benzyl chloride and sodium azide gave 1-benzyl-4-phenyl-1 H-1,2,3-triazole almost quantitatively in 6 h of reaction time. A study of the recyclability and reusability of the catalyst revealed that a-Cu2O could be reused at least five times without significant loss of yield.


Sign in / Sign up

Export Citation Format

Share Document