X-ray microtomographic imaging and analysis for basic research

2006 ◽  
Vol 21 (2) ◽  
pp. 125-131 ◽  
Author(s):  
J. H. Dunsmuir ◽  
S. Bennett ◽  
L. Fareria ◽  
A. Mingino ◽  
M. Sansone

For research facilities with access to synchrotron X-ray sources, X-ray absorption microtomography (XMT) has evolved from an experimental imaging method to a specialized, if not yet routine, microscopy for imaging the three-dimensional (3D) distribution of linear attenuation coefficients and, in some cases, elemental concentration with micron spatial resolution. Recent advances in source and detector design have produced conventional X-ray source instruments with comparable spatial resolution but with lower throughput and without element specific imaging. Both classes of instrument produce 3D images for analysis. We discuss an integrated approach for the implementation of analytical XMT to support basic research into the structure-property relationships of a variety of materials. The essential components include instrumentation for collecting quantitative 3D images, a 3D image processing environment to address questions as to the quantity, composition, geometry, and relationships among the features in one or more images, and visualization to provide insight and communicate results. We give examples of image analysis of resolved and unresolved pore spaces of sandstones.

2016 ◽  
Vol 23 (3) ◽  
pp. 813-819 ◽  
Author(s):  
Alberto Astolfo ◽  
Aurélien Lathuilière ◽  
Vanessa Laversenne ◽  
Bernard Schneider ◽  
Marco Stampanoni

Amyloid beta accumulation into insoluble plaques (Aβp) is known to play a significant role in the pathological process in Alzheimer's disease (AD). The presence of Aβp is also one of the neuropathological hallmarks for the disease. AD final diagnosis is generally acknowledged after the evaluation of Aβp deposition in the brain. Insoluble Aβp accumulation may also concur to cause AD as postulated in the so-calledamyloid hypothesis. Therefore, the visualization, evaluation and quantification of Aβp are nowadays the keys for a better understanding of the disease, which may point to a possible cure for AD in the near future. Synchrotron-based X-ray phase contrast (XPC) has been demonstrated as the only imaging method that can retrieve the Aβp signal with high spatial resolution (up to 10 µm), high sensitivity and three-dimensional information at the same time. Although at the moment XPC is suitable forex vivosamples only, it may develop into an alternative to positron emission tomography and magnetic resonance imaging in Aβp imaging. In this contribution the possibility of using synchrotron-based X-ray phase propagation computed tomography to visualize and measure Aβp on mouse brains is presented. A careful setup optimization for this application leads to a significant improvement of spatial resolution (∼1 µm), data acquisition speed (five times faster), X-ray dose (five times lower) and setup complexity, without a substantial loss in sensitivity when compared with the classic implementation of grating-based X-ray interferometry.


Author(s):  
Linqi Shi ◽  
Zipei Sun ◽  
Jiajie Tian ◽  
Yaodong Huang ◽  
Jiben Meng

Four naphthopyran derivatives, namely, 3,3-bis(naphthalen-1-yl)-3H-naphtho[2,1-b]pyran, C33H22O, NP1, 3,3-bis([1,1′-biphenyl]-4-yl)-3H-naphtho[2,1-b]pyran, C37H26O, NP2, 3,3-bis(4-phenoxyphenyl)-3H-naphtho[2,1-b]pyran, C37H26O2, NP3, and 3,3-bis(4-methoxy-2-methylphenyl)-3H-naphtho[2,1-b]pyran, C29H26O3, NP4, were synthesized and their photochromic properties investigated. NP1–NP4 exhibited good photochromism in different solutions and in poly(methyl methacrylate) (PMMA) film under UV light irradiation. Solvatochromism and the electronic and steric effects of the substituent group on photochromism were analyzed and decolouration curves were found to fit a monoexponential kinetic decay in most cases. Single-crystal X-ray analysis of NP1 and NP2 revealed the structure–property relationships. Good fatigue resistance of NP1, both in solution and in the PMMA film, endows it with potential value for applications.


2004 ◽  
Vol 844 ◽  
Author(s):  
David J. Scurr ◽  
Stephen J. Eichhorn

ABSTRACTThis study uses various characterisation techniques on the razor shell (Ensis siliqua), to relate the shell's microstructure to its mechanical properties. Scanning electron microscopy (SEM) has shown that the outer and inner regions of the shell are composed of simple and complex crossed lamellar microstructures respectively. These layers are interspersed by prismatic layers of a completely different crystallographic orientation. Nanoindentation and microhardness measurements have shown that the structure is anisotropic, and Raman band shifts have been observed within these indented/deformed areas of shell, showing that the microstructure deforms rather than generating surface damage. The use of energy variable synchrotron X-ray diffraction has shown that the calcium carbonate crystals of the shell are preferentially orientated as a function of depth and that opposing residual stresses exist at the outer and inner regions of the shell. This study has analysed several microstructural features of the shell and provided an insight into how they prevent failure of the material.


2000 ◽  
Vol 6 (S2) ◽  
pp. 1148-1149
Author(s):  
U. Ziese ◽  
A.H. Janssen ◽  
T.P. van der Krift ◽  
A.G. van Balen ◽  
W.J. de Ruijter ◽  
...  

Electron tomography is a three-dimensional (3D) imaging method with transmission electron microscopy (TEM) that provides high-resolution 3D images of structural arrangements. Conventional TEM images are in first approximation mere 2D-projections of a 3D sample under investigation. With electron tomographya series of images is acquired of a sample that is tilted over a large angular range (±70°) with small angular tilt increments (so called tilt-series). For the subsequent 3D-reconstruction, the images of the tilt series are aligned relative to each other and the 3D-reconstruction is computed. Electron tomography is the only technique that can provide true 3D information with nm-scale resolution of individual and unique samples. For (cell) biology and material science applications the availability of high-resolution 3D images of structural arrangements within individual samples provides unique architectural information that cannot be obtained otherwise. Routine application of electron tomography will comprise a major revolutionary step forward in the characterization of complex materials and cellular arrangements.


2019 ◽  
Vol 809 ◽  
pp. 587-593
Author(s):  
Simon Zabler ◽  
Katja Schladitz ◽  
Kilian Dremel ◽  
Jonas Graetz ◽  
Dascha Dobrovolskij

To detect and characterize materials defects in fiber composites as well as for evaluatingthe three-dimensional local fiber orientation in the latter, X-ray micro-CT is the preferred methodof choice. When micro computed tomography is applied to inspect large components, the method isreferred to as region-of-interest computed tomography. Parts can be as large as 10 cm wide and 1 mlong, while the measurement volume of micro computed tomography is a cylinder of only 4 − 5 mmdiameter (typical wall thickness of fiber composite parts). In this report, the potentials and limits ofregion-of-interest computed tomography are discussed with regard to spatial resolution and precisionwhen evaluating defects and local fiber orientation in squeeze cast components. The micro computedtomography scanner metRIC at Fraunhofer‘s Development Center X-ray Technology EZRT deliversregion-of-interest computed tomography up to a spatial resolution of 2 μm/voxel, which is sufficientfor determining the orientation of natural or synthetic fibers, wood, carbon and glass. The mean localfiber orientation is estimated on an isotropic structuring element of approximately 0.1 mm length bymeans of volume image analysis (MAVI software package by Fraunhofer ITWM). Knowing the exactlocal fiber orientation is critical for estimating anisotropic thermal conductivity and materials strength.


2004 ◽  
Vol 19 (11) ◽  
pp. 3224-3233 ◽  
Author(s):  
J.A. Lubguban ◽  
S. Gangopadhyay ◽  
B. Lahlouh ◽  
T. Rajagopalan ◽  
N. Biswas ◽  
...  

We present a supercritical CO2(SCCO2) process for the preparation of nanoporous organosilicate thin films for ultralow dielectric constant materials. The porous structure was generated by SCCO2extraction of a sacrificial poly(propylene glycol) (PPG) from a nanohybrid film, where the nanoscopic domains of PPG porogen are entrapped within the crosslinked poly(methylsilsesquioxane) (PMSSQ) matrix. As a comparison, porous structures generated by both the usual thermal decomposition (at approximately 450 °C) and by a SCCO2process for 25 and 55 wt% porogen loadings were evaluated. It is found that the SCCO2process is effective in removing the porogen phase at relatively low temperatures (<200 °C) through diffusion of the supercritical fluid into the phase-separated nanohybrids and selective extraction of the porogen phase. Pore morphologies generated from the two methods are compared from representative three-dimensional (3D) images built from small-angle x-ray scattering (SAXS) data.


2012 ◽  
Vol 46 (1) ◽  
pp. 153-164 ◽  
Author(s):  
B. C. Larson ◽  
L. E. Levine

The ability to study the structure, microstructure and evolution of materials with increasing spatial resolution is fundamental to achieving a full understanding of the underlying science of materials. Polychromatic three-dimensional X-ray microscopy (3DXM) is a recently developed nondestructive diffraction technique that enables crystallographic phase identification, determination of local crystal orientations, grain morphologies, grain interface types and orientations, and in favorable cases direct determination of the deviatoric elastic strain tensor with submicrometre spatial resolution in all three dimensions. With the added capability of an energy-scanning incident beam monochromator, the determination of absolute lattice parameters is enabled, allowing specification of the complete elastic strain tensor with three-dimensional spatial resolution. The methods associated with 3DXM are described and key applications of 3DXM are discussed, including studies of deformation in single-crystal and polycrystalline metals and semiconductors, indentation deformation, thermal grain growth in polycrystalline aluminium, the metal–insulator transition in nanoplatelet VO2, interface strengths in metal–matrix composites, high-pressure science, Sn whisker growth, and electromigration processes. Finally, the outlook for future developments associated with this technique is described.


2016 ◽  
Vol 3 (10) ◽  
pp. 1306-1316 ◽  
Author(s):  
M. Węcławik ◽  
A. Gągor ◽  
R. Jakubas ◽  
A. Piecha-Bisiorek ◽  
W. Medycki ◽  
...  

Two hybrid crystals imidazolium iodoantimonate(iii) and iodobismuthate(iii) have been synthesized and characterized in a wide temperature range (100–350 K) by means of X-ray diffraction, dielectric spectroscopy, proton magnetic resonance, FT-IR spectroscopy and optical observations.


Sign in / Sign up

Export Citation Format

Share Document