scholarly journals X-ray radiation damage to biological macromolecules: further insights

2017 ◽  
Vol 24 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Elspeth F. Garman ◽  
Martin Weik

Despite significant progress made over more than 15 years of research, structural biologists are still grappling with the issue of radiation damage suffered by macromolecular crystals which is induced by the resultant radiation chemistry occurring during X-ray diffraction experiments. Further insights into these effects and the possible mitigation strategies for use in both diffraction and SAXS experiments are given in eight papers in this volume. In particular, damage during experimental phasing is addressed, scavengers for SAXS experiments are investigated, microcrystals are imaged, data collection strategies are optimized, specific damage to tyrosine residues is reexamined, and room temperature conformational heterogeneity as a function of dose is explored. The brief summary below puts these papers into perspective relative to other ongoing radiation damage research on macromolecules.

1958 ◽  
Vol 2 ◽  
pp. 261-274
Author(s):  
W. V. Cummings ◽  
W. J. Gruber

AbstractMany materials, both fissionable and non-fissionable, become very radioactive when subjected to nuclear radiations. This radioactivity results in a high background level in X-ray diffraction studies and becomes a limiting factor in an analysis of radiation damage. A description is given of special techniques that are used to minimize this background and produce optimum diffraction conditions. The radioactive intensity of irradiated X-ray specimens varies from levels that are only mildly troublesome to levels that are extremely hazardous to personnel. The diffraction methods employed at the various levels are explained. An example of the radioactive energy spectrum of a specimen is given to show the method of selecting the best operating conditions and techniques.


2015 ◽  
Vol 22 (2) ◽  
pp. 273-279 ◽  
Author(s):  
Cy M. Jeffries ◽  
Melissa A. Graewert ◽  
Dmitri I. Svergun ◽  
Clément E. Blanchet

Radiation damage is the general curse of structural biologists who use synchrotron small-angle X-ray scattering (SAXS) to investigate biological macromolecules in solution. The EMBL-P12 biological SAXS beamline located at the PETRAIII storage ring (DESY, Hamburg, Germany) caters to an extensive user community who integrate SAXS into their diverse structural biology programs. The high brilliance of the beamline [5.1 × 1012 photons s−1, 10 keV, 500 (H) µm × 250 (V) µm beam size at the sample position], combined with automated sample handling and data acquisition protocols, enable the high-throughput structural characterization of macromolecules in solution. However, considering the often-significant resources users invest to prepare samples, it is crucial that simple and effective protocols are in place to limit the effects of radiation damage once it has been detected. Here various practical approaches are evaluated that users can implement to limit radiation damage at the P12 beamline to maximize the chances of collecting quality data from radiation sensitive samples.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 854
Author(s):  
Ki Hyun Nam

Radiation damage and cryogenic sample environment are an experimental limitation observed in the traditional X-ray crystallography technique. However, the serial crystallography (SX) technique not only helps to determine structures at room temperature with minimal radiation damage, but it is also a useful tool for profound understanding of macromolecules. Moreover, it is a new tool for time-resolved studies. Over the past 10 years, various sample delivery techniques and data collection strategies have been developed in the SX field. It also has a wide range of applications in instruments ranging from the X-ray free electron laser (XFEL) facility to synchrotrons. The importance of the various approaches in terms of the experimental techniques and a brief review of the research carried out in the field of SX has been highlighted in this editorial.


1958 ◽  
Vol 2 ◽  
pp. 107-115
Author(s):  
Vincent G. Scotti ◽  
James I. Mueller ◽  
John J. Little

AbstractWith the advent of nuclear engineering, x-ray diffraction has become an important analytical tool in the study of radiation damage due to neutron and gamma-ray irradiation. The materials under study in this work have rdioactive levels up to 40 R/hr. at 17 centimeters combined β and γ. The activity of the various samples under study may be due to (n, γ) reactions or fission products or both.Data are presented to illustrate the use of sample shielding, detector shielding pulse height discrimination and the combination of all three aids in an effort to attain the most favorable peak to background ratio.


1973 ◽  
Vol 28 (7-8) ◽  
pp. 426-428 ◽  
Author(s):  
Ulrich Müller

CH3HgN3 crystallizes in the space group P21/c with four molecules per unit cell. The structure was solved by common crystallographic methods using X-ray diffraction data that were collected at a temperature of 100°K. The cooling was necessary to limit the radiation damage of the crystals. The molecules possess an essentially linear C-Hg-N group; in the crystals they are associated to layers bearing the methyl groups on their outer side.


2014 ◽  
Vol 70 (9) ◽  
pp. 1272-1275 ◽  
Author(s):  
Inokentijs Josts ◽  
Rhys Grinter ◽  
Sharon M. Kelly ◽  
Khedidja Mosbahi ◽  
Aleksander Roszak ◽  
...  

TamB is a recently described inner membrane protein that, together with its partner protein TamA, is required for the efficient secretion of a subset of autotransporter proteins in Gram-negative bacteria. In this study, the C-terminal DUF490963–1138domain of TamB was overexpressed inEscherichia coliK-12, purified and crystallized using the sitting-drop vapour-diffusion method. The crystals belonged to the primitive trigonal space groupP3121, with unit-cell parametersa=b= 57.34,c= 220.74 Å, and diffracted to 2.1 Å resolution. Preliminary secondary-structure and X-ray diffraction analyses are reported. Two molecules are predicted to be present in the asymmetric unit. Experimental phasing using selenomethionine-labelled protein will be undertaken in the future.


2009 ◽  
Vol 170 (1-3) ◽  
pp. 4-12 ◽  
Author(s):  
M.R. Howells ◽  
T. Beetz ◽  
H.N. Chapman ◽  
C. Cui ◽  
J.M. Holton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document