Surface plasmon band tailoring of plasmonic nanostructure under the effect of water radiolysis by synchrotron radiation

2017 ◽  
Vol 24 (6) ◽  
pp. 1209-1217 ◽  
Author(s):  
Amardeep Bharti ◽  
Ashish K. Agrawal ◽  
Balwant Singh ◽  
Sanjeev Gautam ◽  
Navdeep Goyal

Plasmonic metal nanostructures have a significant impact on a diverse domain of fields, including photocatalysis, antibacterial, drug vector, biosensors, photovoltaic cell, optical and electronic devices. Metal nanoparticles (MNps) are the simplest nanostructure promising ultrahigh stability, ease of manufacturing and tunable optical response. Silver nanoparticles (AgNp) dominate in the class of MNps because of their relatively high abundance, chemical activity and unique physical properties. Although MNps offer the desired physical properties, most of the synthesis and fabrication methods lag at the electronic grade due to an unbidden secondary product as a result of the direct chemical reduction process. In this paper, a facile protocol is presented for fabricating high-yield in situ plasmonic AgNps under monochromatic X-rays irradiation, without the use of any chemical reducing agent which prevents the formation of secondary products. The ascendancy of this protocol is to produce high quantitative yield with control over the reaction rate, particle size and localized surface plasmon resonance response, and also to provide the feasibility for in situ characterization. The role of X-ray energy, beam flux and integrated dose towards the fabrication of plasmonic nanostructures has been studied. This experiment extends plasmonic research and provides avenues for upgrading production technologies of MNps.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amardeep Bharti ◽  
Keun Hwa Chae ◽  
Navdeep Goyal

AbstractPlasmonic nanostructures are of immense interest of research due to its widespread applications in microelectronics, photonics, and biotechnology, because of its size and shape-dependent localized surface plasmon resonance response. The great efforts have been constructed by physicists, chemists, and material scientists to deliver optimized reaction protocol to tailor the size and shape of nanostructures. Real-time characterization emerges out as a versatile tool in perspective to the optimization of synthesis parameters. Moreover, in the past decades, radiation-induced reduction of metallic-salt to nanoparticles dominates over the conventional direct chemical reduction process which overcomes the production of secondary products and yields ultra-high quality and pure nanostructures. Here we show, the real-time/in-situ synthesis and detection of plasmonic (Au andAg) nanoparticles using single synchrotron monochromatic 6.7 keV X-rays based Nano-Tomography beamline. The real-time X-ray nano-tomography of plasmonic nanostructures has been first-time successfully achieved at such a low-energy that would be leading to the possibility of these experiments at laboratory-based sources. In-situ optical imaging confirms the radiolysis of water molecule resulting in the production of $$e_{aq}^-,\,OH^\bullet ,$$ e aq - , O H ∙ , and $$O_2^-$$ O 2 - under X-ray irradiation. The obtained particle-size and size-distribution by X-ray tomography are in good agreement to TEM results. The effect of different chemical environment media on the particle-size has also been studied. This work provides the protocol to precisely control the size of nanostructures and to synthesize the ultrahigh-purity grade monodisperse nanoparticles that would definitely enhance the phase-contrast in cancer bio-imaging and plasmonic photovoltaic application.


2020 ◽  
Vol 2 (6) ◽  
pp. 2448-2461 ◽  
Author(s):  
Y. Soldo-Olivier ◽  
A. Abisset ◽  
A. Bailly ◽  
M. De Santis ◽  
S. Garaudée ◽  
...  

In situ experiments coupling GISAXS, SDRS and GIXRD allowed investigating the relationship between morphology, structure and plasmonic properties of Au nanoparticles (2–6 nm) during their growth on TiO2(111).


2021 ◽  
Vol 11 (24) ◽  
pp. 11855
Author(s):  
Jae-Hoon Ryu ◽  
Ha Young Lee ◽  
Jeong-Yeon Lee ◽  
Han-Sol Kim ◽  
Sung-Hyun Kim ◽  
...  

The sensitive characteristics of surface-enhanced Raman scattering (SERS) can be applied to various fields, and this has been of interest to many researchers. Propagating surface plasmon resonance (PSPR) was initially utilized but, recently, it has been studied coupled with localized surface plasmon resonance that occurs in metal nanostructures. In this study, a new type of metal microstructure, named crater, was used for generating PSPR and Ag nanowires (AgNWs) for the generation of LSPR. A crater structure was fabricated on a GaAs (100) wafer using the wet chemical etching method. Then, a metal film was deposited inside the crater, and AgNWs were uniformly coated inside using the spray coating method. Metal films were used to enhance the electromagnetic field when coupled with AgNWs to obtain a high SERS intensity. The SERS intensity measured inside the crater structure with deposited AgNWs was up to 17.4 times higher than that of the flat structure with a deposited Ag film. These results suggest a new method for enhancing the SERS phenomenon, and it is expected that a larger SERS intensity can be obtained by fine-tuning the crater size and diameter and the length of the AgNWs.


2012 ◽  
Vol 1391 ◽  
Author(s):  
Jiang Wu ◽  
Scott Mangham ◽  
Rick Eyi ◽  
Seungyong Lee ◽  
Vanga R. Reddy ◽  
...  

ABSTRACTSurface plasmon enhanced InAs/GaAs quantum dot solar cells are reported. Light trapping by metallic nanostructures offers the potential to realize high efficient quantum dot based intermediate band solar cells. Both Au and Ag nanoparticles spherical metal nanoparticles are synthesized by the salt reduction method. The large area coupling of metal nanoparticles and quantum dot solar cell surface is carried out by using 1,3-propanedithiol as linker molecules. The conversion efficiency of the solar cells has been increased from 9.5% to 11.6% after deposition of Au nanoparticles and from 9.5 to 10.9% after incorporating Ag nanoparticles. The conversion efficiency enhancement is mainly as a result of improved photocurrent due to enhanced forward scattering from the plasmonic nanostructures.


Sign in / Sign up

Export Citation Format

Share Document