Timing methodologies and studies at the FERMI free-electron laser

2018 ◽  
Vol 25 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Riccardo Mincigrucci ◽  
Filippo Bencivenga ◽  
Emiliano Principi ◽  
Flavio Capotondi ◽  
Laura Foglia ◽  
...  

Time-resolved investigations have begun a new era of chemistry and physics, enabling the monitoring in real time of the dynamics of chemical reactions and matter. Induced transient optical absorption is a basic ultrafast electronic effect, originated by a partial depletion of the valence band, that can be triggered by exposing insulators and semiconductors to sub-picosecond extreme-ultraviolet pulses. Besides its scientific and fundamental implications, this process is very important as it is routinely applied in free-electron laser (FEL) facilities to achieve the temporal superposition between FEL and optical laser pulses with tens of femtoseconds accuracy. Here, a set of methodologies developed at the FERMI facility based on ultrafast effects in condensed materials and employed to effectively determine the FEL/laser cross correlation are presented.

2021 ◽  
Author(s):  
Najmeh S. Mirian ◽  
Michele Di Fraia ◽  
Simone Spampinati ◽  
Filippo Sottocorona ◽  
Enrico Allaria ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Ding ◽  
Marc Rebholz ◽  
Lennart Aufleger ◽  
Maximilian Hartmann ◽  
Veit Stooß ◽  
...  

AbstractHigh-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.


Optica ◽  
2021 ◽  
Author(s):  
William Peters ◽  
Travis Jones ◽  
Anatoly Efimov ◽  
Emanuele Pedersoli ◽  
Laura Foglia ◽  
...  

2016 ◽  
Vol 128 (36) ◽  
pp. 10899-10903
Author(s):  
Thomas Schlathölter ◽  
Geert Reitsma ◽  
Dmitrii Egorov ◽  
Olmo Gonzalez-Magaña ◽  
Sadia Bari ◽  
...  

2016 ◽  
Vol 55 (36) ◽  
pp. 10741-10745 ◽  
Author(s):  
Thomas Schlathölter ◽  
Geert Reitsma ◽  
Dmitrii Egorov ◽  
Olmo Gonzalez-Magaña ◽  
Sadia Bari ◽  
...  

2009 ◽  
Vol 80 (2) ◽  
Author(s):  
R. Mitzner ◽  
A. A. Sorokin ◽  
B. Siemer ◽  
S. Roling ◽  
M. Rutkowski ◽  
...  

2018 ◽  
Vol 25 (1) ◽  
pp. 68-71 ◽  
Author(s):  
Shigeki Owada ◽  
Kyo Nakajima ◽  
Tadashi Togashi ◽  
Tetsuo Kayatama ◽  
Makina Yabashi

Arrival timing diagnostics performed at a soft X-ray free-electron laser (FEL) beamline of SACLA are described. Intense soft X-ray FEL pulses with one-dimensional focusing efficiently induce transient changes of optical reflectivity on the surface of GaAs. The arrival timing between soft X-ray FEL and optical laser pulses was successfully measured as a spatial position of the reflectivity change. The temporal resolution evaluated from the imaging system reaches ∼10 fs. This method requires only a small portion of the incident pulse energy, which enables the simultaneous operation of the arrival timing diagnostics and experiments by introducing a wavefront-splitting scheme.


2018 ◽  
Vol 25 (2) ◽  
pp. 592-603 ◽  
Author(s):  
Kyo Nakajima ◽  
Yasumasa Joti ◽  
Tetsuo Katayama ◽  
Shigeki Owada ◽  
Tadashi Togashi ◽  
...  

X-ray free-electron laser (XFEL) pulses from SPring-8 Ångstrom Compact free-electron LAser (SACLA) with a temporal duration of <10 fs have provided a variety of benefits in scientific research. In a previous study, an arrival-timing monitor was developed to improve the temporal resolution in pump–probe experiments at beamline 3 by rearranging data in the order of the arrival-timing jitter between the XFEL and the synchronized optical laser pulses. This paper presentsTiming Monitor Analyzer (TMA), a software package by which users can conveniently obtain arrival-timing data in the analysis environment at SACLA. The package is composed of offline tools that pull stored data from cache storage, and online tools that pull data from a data-handling server in semi-real time during beam time. Users can select the most suitable tool for their purpose, and share the results through a network connection between the offline and online analysis environments.


Sign in / Sign up

Export Citation Format

Share Document