scholarly journals A comparison of absorption and phase contrast for X-ray imaging of biological cells

2018 ◽  
Vol 25 (5) ◽  
pp. 1490-1504 ◽  
Author(s):  
Colin Nave

X-ray imaging allows biological cells to be examined at a higher resolution than possible with visible light and without some of the preparation difficulties associated with electron microscopy of thick samples. The most used and developed technique is absorption contrast imaging in the water window which exploits the contrast between carbon and oxygen at an energy of around 500 eV. A variety of phase contrast techniques are also being developed. In general these operate at a higher energy, enabling thicker cells to be examined and, in some cases, can be combined with X-ray fluorescence imaging to locate specific metals. The various methods are based on the differences between the complex refractive indices of the cellular components and the surrounding cytosol or nucleosol, the fluids present in the cellular cytoplasm and nucleus. The refractive indices can be calculated from the atomic composition and density of the components. These in turn can be obtained from published measurements using techniques such as chemical analysis, scanning electron microscopy and X-ray imaging at selected energies. As examples, the refractive indices of heterochromatin, inner mitochondrial membranes, the neutral core of lipid droplets, starch granules, cytosol and nucleosol are calculated. The refractive index calculations enable the required doses and fluences to be obtained to provide images with sufficient statistical significance, for X-ray energies between 200 and 4000 eV. The statistical significance (e.g. the Rose criterion) for various requirements is discussed. The calculations reveal why some cellular components are more visible by absorption contrast and why much greater exposure times are required to see some cellular components. A comparison of phase contrast as a function of photon energy with absorption contrast in the water window is provided and it is shown that much higher doses are generally required for the phase contrast measurements. This particularly applies to those components with a high carbon content but with a mass density similar to the surrounding cytosol or nucleosol. The results provide guidance for the most appropriate conditions for X-ray imaging of individual cellular components within cells of various thicknesses.

2019 ◽  
Vol 26 (2) ◽  
pp. 603-604 ◽  
Author(s):  
Colin Nave

An error in the calculation for X-ray absorption imaging has been identified in the paper by Nave (2018) [J. Synchrotron Rad. 25, 1490–1504]. The required fluence and dose in the paper are a factor of ten too low for this mode of imaging.


Author(s):  
M.G. Baldini ◽  
S. Morinaga ◽  
D. Minasian ◽  
R. Feder ◽  
D. Sayre ◽  
...  

Contact X-ray imaging is presently developing as an important imaging technique in cell biology. Our recent studies on human platelets have demonstrated that the cytoskeleton of these cells contains photondense structures which can preferentially be imaged by soft X-ray imaging. Our present research has dealt with platelet activation, i.e., the complex phenomena which precede platelet appregation and are associated with profound changes in platelet cytoskeleton. Human platelets suspended in plasma were used. Whole cell mounts were fixed and dehydrated, then exposed to a stationary source of soft X-rays as previously described. Developed replicas and respective grids were studied by scanning electron microscopy (SEM).


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


2021 ◽  
Vol 20 ◽  
pp. 153303382110101
Author(s):  
Thet-Thet Lwin ◽  
Akio Yoneyama ◽  
Hiroko Maruyama ◽  
Tohoru Takeda

Phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer provides high sensitivity and high spatial resolution, and it has the ability to depict the fine morphological structures of biological soft tissues, including tumors. In this study, we quantitatively compared phase-contrast synchrotron-based X-ray computed tomography images and images of histopathological hematoxylin-eosin-stained sections of spontaneously occurring rat testicular tumors that contained different types of cells. The absolute densities measured on the phase-contrast synchrotron-based X-ray computed tomography images correlated well with the densities of the nuclear chromatin in the histological images, thereby demonstrating the ability of phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer to reliably identify the characteristics of cancer cells within solid soft tissue tumors. In addition, 3-dimensional synchrotron-based phase-contrast X-ray computed tomography enables screening for different structures within tumors, such as solid, cystic, and fibrous tissues, and blood clots, from any direction and with a spatial resolution down to 26 μm. Thus, phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer shows potential for being useful in preclinical cancer research by providing the ability to depict the characteristics of tumor cells and by offering 3-dimensional information capabilities.


2009 ◽  
Vol 43 (4) ◽  
pp. 156-160
Author(s):  
N. N. Blinov ◽  
A. Yu. Vasil’ev ◽  
N. S. Serova ◽  
A. Yu. Gryaznov ◽  
N. N. Potrakhov
Keyword(s):  
X Ray ◽  

2012 ◽  
Vol 204 (5) ◽  
pp. 631-636 ◽  
Author(s):  
Alyssa A. Appel ◽  
Cheng-Ying Chou ◽  
Howard P. Greisler ◽  
Jeffery C. Larson ◽  
Sunil Vasireddi ◽  
...  

2013 ◽  
Vol 60 (1) ◽  
pp. 416-422 ◽  
Author(s):  
Erin A. Miller ◽  
Timothy A. White ◽  
Benjamin S. McDonald ◽  
Allen Seifert

2008 ◽  
Author(s):  
Yuhua Li ◽  
John Rong ◽  
Robert Y. L. Chu ◽  
Da Zhang ◽  
Ann Archer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document