Dynamical effects on superradiant THz emission from an undulator

2019 ◽  
Vol 26 (3) ◽  
pp. 737-749 ◽  
Author(s):  
Gianluca Geloni ◽  
Takanori Tanikawa ◽  
Sergey Tomin

Superradiant emission occurs when ultra-relativistic electron bunches are compressed to a duration shorter than the wavelength of the light emitted by them. In this case the different electron contributions to the emitted field sum up in phase and the output intensity scales as the square of the number of electrons in the bunch. In this work the particular case of superradiant emission from an undulator in the THz frequency range is considered. An electron bunch at the entrance of a THz undulator setup has typically an energy chirp because of the necessity to compress it in magnetic chicanes. Then, the chirped electron bunch evolves passing through a highly dispersive THz undulator with a large magnetic field amplitude, and the shape of its longitudinal phase space changes. Here the impact of this evolution on the emission of superradiant THz radiation is studied, both by means of an analytical model and by simulations.

2010 ◽  
Vol 105 (23) ◽  
Author(s):  
Y.-E Sun ◽  
P. Piot ◽  
A. Johnson ◽  
A. H. Lumpkin ◽  
T. J. Maxwell ◽  
...  

Author(s):  
S. B. van der Geer ◽  
M. J. de Loos ◽  
T. van Oudheusden ◽  
W. P. E. M. op ’t Root ◽  
M. J. van der Wiel ◽  
...  

2021 ◽  
Vol 66 (9) ◽  
pp. 771
Author(s):  
I. Haouam

We study the Pauli equation in a two-dimensional noncommutative phase-space by considering a constant magnetic field perpendicular to the plane. The noncommutative problem is related to the equivalent commutative one through a set of two-dimensional Bopp-shift transformations. The energy spectrum and the wave function of the two-dimensional noncommutative Pauli equation are found, where the problem in question has been mapped to the Landau problem. In the classical limit, we have derived the noncommutative semiclassical partition function for one- and N- particle systems. The thermodynamic properties such as the Helmholtz free energy, mean energy, specific heat and entropy in noncommutative and commutative phasespaces are determined. The impact of the phase-space noncommutativity on the Pauli system is successfully examined.


2020 ◽  
Vol 2020 (10) ◽  
pp. 4-11
Author(s):  
Victor Tikhomirov ◽  
Aleksandr Gorlenko ◽  
Stanislav Volohov ◽  
Mikhail Izmerov

The work purpose is the investigation of magnetic field impact upon properties of friction steel surfaces at fit stripping with tightness through manifested effects and their wear visually observed. On the spots of a real contact the magnetic field increases active centers, their amount and saturation with the time of dislocation outlet, and has an influence upon tribo-mating. The external electro-magnetic field promotes the increase of the number of active centers at the expense of dislocations outlet on the contact surface, and the increase of a physical contact area results in friction tie strengthening and growth of a friction factor. By the example of friction pairs of a spentonly unit in the suspension of coach cars there is given a substantiation of actuality and possibility for the creation of technical devices with the controlled factor of friction and the stability of effects achieved is also confirmed experimentally. Investigation methods: the fulfillment of laboratory physical experiments on the laboratory plant developed and patented on bush-rod samples inserted with the fit and tightness. The results of investigations and novelty: the impact of the magnetic field upon the value of a stripping force of a press fit with the guaranteed tightness is defined. Conclusion: there is a possibility to control a friction factor through the magnetic field impact upon a friction contact.


Author(s):  
KHOPUNOV EDUARD AFANAS'EVICH ◽  
◽  
SHATAILOV IURII LEONIDOVICH ◽  
VORONCHIKHIN SERGEI LEONIDOVICH ◽  
SHATAILOV ALEKSANDR IUR'EVICH ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document