scholarly journals Multi-analyser detector (MAD) for high-resolution and high-energy powder X-ray diffraction

2021 ◽  
Vol 28 (1) ◽  
pp. 146-157
Author(s):  
Alexander Schökel ◽  
Martin Etter ◽  
Andreas Berghäuser ◽  
Alexander Horst ◽  
Dirk Lindackers ◽  
...  

For high-resolution powder diffraction in material science, high photon energies are necessary, especially for in situ and in operando experiments. For this purpose, a multi-analyser detector (MAD) was developed for the high-energy beamline P02.1 at PETRA III of the Deutsches Elektronen-Synchrotron (DESY). In order to be able to adjust the detector for the high photon energies of 60 keV, an individually adjustable analyser–crystal setup was designed. The adjustment is performed via piezo stepper motors for each of the ten channels. The detector shows a low and flat background as well as a high signal-to-noise ratio. A range of standard materials were measured for characterizing the performance. Two exemplary experiments were performed to demonstrate the potential for sophisticated structural analysis with the MAD: (i) the structure of a complex material based on strontium niobate titanate and strontium niobate zirconate was determined and (ii) an in situ stroboscopy experiment with an applied electric field on a highly absorbing piezoceramic was performed. These experiments demonstrate the capabilities of the new MAD, which advances the frontiers of the structural characterization of materials.

2007 ◽  
Vol 539-543 ◽  
pp. 2353-2358 ◽  
Author(s):  
Ulrich Lienert ◽  
Jonathan Almer ◽  
Bo Jakobsen ◽  
Wolfgang Pantleon ◽  
Henning Friis Poulsen ◽  
...  

The implementation of 3-Dimensional X-Ray Diffraction (3DXRD) Microscopy at the Advanced Photon Source is described. The technique enables the non-destructive structural characterization of polycrystalline bulk materials and is therefore suitable for in situ studies during thermo-mechanical processing. High energy synchrotron radiation and area detectors are employed. First, a forward modeling approach for the reconstruction of grain boundaries from high resolution diffraction images is described. Second, a high resolution reciprocal space mapping technique of individual grains is presented.


2011 ◽  
Vol 19 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Mark J. Styles ◽  
Matthew R. Rowles ◽  
Ian C. Madsen ◽  
Katherine McGregor ◽  
Andrew J. Urban ◽  
...  

This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate thein situcharacterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during anin situstudy of an operational Fray–Farthing–Chen Cambridge electrowinning cell, featuring molten CaCl2as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed.


1993 ◽  
Vol 312 ◽  
Author(s):  
A. H. Bensaoula ◽  
A. Freundlich ◽  
A. Bensaoula ◽  
V. Rossignol

AbstractPhosphorus exposed GaAs (100) surfaces during a Chemical Beam Epitaxy growth process are studied using in-situ Reflection High Energy Electron Diffraction and ex-situ High Resolution X-ray Diffraction. It is shown that the phosphorus exposure of a GaAs (100) surface in the 500 – 580 °C temperature range results in the formation of one GaP monolayer.


2020 ◽  
Vol 104 (3) ◽  
pp. 1424-1435
Author(s):  
Michael W. Knauf ◽  
Craig P. Przybyla ◽  
Paul A. Shade ◽  
Jun‐Sang Park ◽  
Andrew J. Ritchey ◽  
...  

2009 ◽  
Vol 156-158 ◽  
pp. 437-441 ◽  
Author(s):  
Hannes Grillenberger ◽  
Andreas Magerl

Oxygen precipitation in silicon has been studied in-situ by high energy X-ray diffraction. A gain of diffracted intensity is expected if an ideal crystal is distorted by growing precipitates as the diffraction mode changes from a dynamical to a more kinematical one. Irreversible changes in the intensity of a 220 and a 400 Bragg peak are detected for Czochralski grown samples only, but not in a float zone grown reference crystal. Thus, these changes are attributed to oxygen precipitation, which is confirmed by a subsequent classical ex-situ characterization. Further, the changes of the intensities of the two measured Bragg peaks are compared to each other to get the level of change in the diffraction mode from a dynamical to a kinematical one. The detection limit of the specific setup is estimated via a simulation of the defect inventory to correspond to a precipitate diameter of 50nm with the density of 6.9•109 1/cm3. The diffraction experiments are done with polychromatic and divergent X-rays generated by a laboratory source, albeit with high energy. This results in a simple and accessible setup for the characterization of oxygen precipitates.


2007 ◽  
Vol 1027 ◽  
Author(s):  
Aaron Vodnick ◽  
Michael Lawrence ◽  
Bethany Little ◽  
Derek Worden ◽  
Shefford Baker

AbstractReal-time in-situ synchrotron x-ray diffraction measurements were performed at the Cornell High Energy Synchrotron Source to characterize both the texture evolution and stresses within the individual texture components of Ag films during recrystallization. As deposited films had a nearly perfect (111) fiber texture. During isothermal anneals, stress and texture were characterized in real-time as the texture evolved into a strong (001) fiber. An Avrami analysis of the evolving texture fractions yielded very different activation energies for films on different barrier layers, suggesting different governing mechanisms were responsible for secondary grain growth. The strains were used to test a common model for texture prediction that assumes the same strain within each texture component. It was found that secondary (001) grains were able to grow primarily strain free. Selection for this strain energy minimizing orientation occurred during the nucleation process during which texture interactions play an important role. By using these real time measurements, we are able to show that driving forces for texture transformations in metal films may not be as simple previously described.


2019 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Imed-Eddine Benrabah ◽  
Hugo Paul Van Landeghem ◽  
Frédéric Bonnet ◽  
Florence Robaut ◽  
Alexis Deschamps

In-situ high energy X-Ray diffraction (HEXRD) was used on compositionally graded steels to study the effect of substitutional elements on ferrite growth kinetics in Fe–C–X and Fe–C–X–Y systems. Two systems were selected to illustrate the applicability of the combinatorial approach in studying such transformations, Fe–C–Mn and Fe–C–Mn–Mo. Comparison between the measured ferrite growth kinetics using HEXRD and the predicted ones using Para-Equilibrium (PE) and Local Equilibrium with Negligible Partitioning (LENP) models indicates that the fractions reached at the stasis of transformation are lower than the predicted ones. Experiments indicated a deviation of measured kinetics from both PE and LENP models when increasing Mn and decreasing Mo (in Fe–C–Mn–Mo system). The large amount of data that can be obtained using this approach can be used for validating existing models describing ferrite growth kinetics.


Sign in / Sign up

Export Citation Format

Share Document