scholarly journals Identifying, studying and making good use of macromolecular crystals

Author(s):  
Guillermo Calero ◽  
Aina E. Cohen ◽  
Joseph R. Luft ◽  
Janet Newman ◽  
Edward H. Snell

Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.

2014 ◽  
Vol 70 (9) ◽  
pp. 2344-2355 ◽  
Author(s):  
Ryan McGreevy ◽  
Abhishek Singharoy ◽  
Qufei Li ◽  
Jingfen Zhang ◽  
Dong Xu ◽  
...  

X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally,viasystematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.


2007 ◽  
Vol 64 (1) ◽  
pp. 204-213 ◽  
Author(s):  
Mark Bartlam ◽  
Xiaoyu Xue ◽  
Zihe Rao

The 2003 outbreak of severe acute respiratory syndrome (SARS), caused by a previously unknown coronavirus called SARS-CoV, had profound social and economic impacts worldwide. Since then, structure–function studies of SARS-CoV proteins have provided a wealth of information that increases our understanding of the underlying mechanisms of SARS. While no effective therapy is currently available, considerable efforts have been made to develop vaccines and drugs to prevent SARS-CoV infection. In this review, some of the notable achievements made by SARS structural biology projects worldwide are examined and strategies for therapeutic intervention are discussed based on available SARS-CoV protein structures. To date, 12 structures have been determined by X-ray crystallography or NMR from the 28 proteins encoded by SARS-CoV. One key protein, the SARS-CoV main protease (Mpro), has been the focus of considerable structure-based drug discovery efforts. This article highlights the importance of structural biology and shows that structures for drug design can be rapidly determined in the event of an emerging infectious disease.


IUCrJ ◽  
2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Miranda L. Lynch ◽  
Edward H. Snell ◽  
Sarah E. J. Bowman

The global COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has wreaked unprecedented havoc on global society, in terms of a huge loss of life and burden of morbidity, economic upheaval and social disruption. Yet the sheer magnitude and uniqueness of this event has also spawned a massive mobilization of effort in the scientific community to investigate the virus, to develop therapeutics and vaccines, and to understand the public health impacts. Structural biology has been at the center of these efforts, and so it is advantageous to take an opportunity to reflect on the status of structural science vis-à-vis its role in the fight against COVID-19, to register the unprecedented response and to contemplate the role of structural biology in addressing future outbreak threats. As the one-year anniversary of the World Health Organization declaration that COVID-19 is a pandemic has just passed, over 1000 structures of SARS-CoV-2 biomolecules have been deposited in the Worldwide Protein Data Bank (PDB). It is rare to obtain a snapshot of such intense effort in the structural biology arena and is of special interest as the 50th anniversary of the PDB is celebrated in 2021. It is additionally timely as it overlaps with a period that has been termed the `resolution revolution' in cryoelectron microscopy (CryoEM). CryoEM has recently become capable of producing biomolecular structures at similar resolutions to those traditionally associated with macromolecular X-ray crystallography. Examining SARS-CoV-2 protein structures that have been deposited in the PDB since the virus was first identified allows a unique window into the power of structural biology and a snapshot of the advantages of the different techniques available, as well as insight into the complementarity of the structural methods.


2020 ◽  
Vol 48 (6) ◽  
pp. 2505-2524
Author(s):  
Tristan O. C. Kwan ◽  
Danny Axford ◽  
Isabel Moraes

The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.


2016 ◽  
Vol 44 (3) ◽  
pp. 838-844 ◽  
Author(s):  
David Hardy ◽  
Roslyn M. Bill ◽  
Anass Jawhari ◽  
Alice J. Rothnie

Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future.


2014 ◽  
Vol 67 (12) ◽  
pp. 1793 ◽  
Author(s):  
Marion Boudes ◽  
Damià Garriga ◽  
Fasséli Coulibaly

The use of X-ray crystallography for the structure determination of biological macromolecules has experienced a steady expansion over the last 20 years with the Protein Data Bank growing from <1000 deposited structures in 1992 to >100 000 in 2014. The large number of structures determined each year not only reflects the impact of X-ray crystallography on many disciplines in the biological and medical fields but also its accessibility to non-expert laboratories. Thus protein crystallography is now largely a mainstream research technique and is routinely integrated in high-throughput pipelines such as structural genomics projects and structure-based drug design. Yet, significant frontiers remain that continuously require methodological developments. In particular, membrane proteins, large assemblies, and proteins from scarce natural sources still represent challenging targets for which obtaining the large diffracting crystals required for classical crystallography is often difficult. These limitations have fostered the emergence of microcrystallography, novel approaches in structural biology that collectively aim at determining structures from the smallest crystals. Here, we review the state of the art of macromolecular microcrystallography and recent progress achieved in this field.


2020 ◽  
Vol 76 (5) ◽  
pp. 400-405 ◽  
Author(s):  
John H. Beale

The number of new X-ray crystallography-based submissions to the Protein Data Bank appears to be at the beginning of a decline, perhaps signalling an end to the era of the dominance of X-ray crystallography within structural biology. This letter, from the viewpoint of a young structural biologist, applies the Copernican method to the life expectancy of crystallography and asks whether the technique is still the mainstay of structural biology. A study of the rate of Protein Data Bank depositions allows a more nuanced analysis of the fortunes of macromolecular X-ray crystallography and shows that cryo-electron microscopy might now be outcompeting crystallography for new labour and talent, perhaps heralding a change in the landscape of the field.


Author(s):  
Olanrewaju Durojaye

Protein-peptide and protein-protein interactions play an essential role in different functional and structural cellular organizational aspects. While X-ray crystallography generates the most complete structural characterization, most biological interactions exist in biomolecular complexes that are neither compliant nor responsive to direct experimental analysis. The development of computational docking approaches is therefore necessary. This starts from component protein structures to the prediction of their complexes, preferentially with precision close to complex structures generated by X-ray crystallography. To guarantee faithful chromosomal segregation, there must be a proper assembling of the kinetochore (a protein complex with multiple subunits) at the centromere during the process of cell division. As an important member of the inner kinetochore, defects in any of the subunits making up the CENP-HIKM complex leads to kinetochore dysfunction and an eventual chromosomal mis-segregation and cell death. Previous studies in an attempt to understand the assembly and mechanism devised by the CENP-HIKM in promoting functionality of the kinetochore, have reconstituted the protein complex from different organisms including fungi and yeast. Here, we present a detailed computational model of the physical interactions that exist between each component of the human CENP-HIKM, while validating each modeled structure using orthologs with existing crystal structures from the protein data bank. Results from this study substantiates the existing hypothesis that the human CENP-HIK complex share a similar architecture with its fungal and yeast orthologs, and likewise validates the binding mode of CENP-M to the C-terminus of the human CENP-I based on existing experimental reports.


2010 ◽  
Vol 43 (5) ◽  
pp. 1113-1120 ◽  
Author(s):  
Esko Oksanen ◽  
François Dauvergne ◽  
Adrian Goldman ◽  
Monika Budayova-Spano

H atoms play a central role in enzymatic mechanisms, but H-atom positions cannot generally be determined by X-ray crystallography. Neutron crystallography, on the other hand, can be used to determine H-atom positions but it is experimentally very challenging. Yeast inorganic pyrophosphatase (PPase) is an essential enzyme that has been studied extensively by X-ray crystallography, yet the details of the catalytic mechanism remain incompletely understood. The temperature instability of PPase crystals has in the past prevented the collection of a neutron diffraction data set. This paper reports how the crystal growth has been optimized in temperature-controlled conditions. To stabilize the crystals during neutron data collection a Peltier cooling device that minimizes the temperature gradient along the capillary has been developed. This device allowed the collection of a full neutron diffraction data set.


Sign in / Sign up

Export Citation Format

Share Document