scholarly journals Extraordinary structural complexity of ilmajokite: a multilevel hierarchical framework structure of natural origin

IUCrJ ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Andrey A. Zolotarev ◽  
Sergey V. Krivovichev ◽  
Fernando Cámara ◽  
Luca Bindi ◽  
Elena S. Zhitova ◽  
...  

The crystal structure of ilmajokite, a rare Na-K-Ba-Ce-titanosilicate from the Khibiny mountains, Kola peninsula, Russia, has been solved using single-crystal X-ray diffraction data. The crystal structure is based on a 3D titanosilicate framework consisting of trigonal prismatic titanosilicate (TPTS) clusters centered by Ce3+ in [9]-coordination. Four adjacent TPTS clusters are linked into four-membered rings within the (010) plane and connected via ribbons parallel to 101. The ribbons are organized into layers parallel to (010) and modulated along the a axis with a modulation wavelength of csinβ = 32.91 Å and an amplitude of ∼b/2 = 13.89 Å. The layers are linked by additional silicate tetrahedra. Na+, K+, Ba2+ and H2O groups occur in the framework cavities and have different occupancies and coordination environments. The crystal structure of ilmajokite can be separated into eight hierarchical levels: atoms, coordination polyhedra, TPTS clusters, rings, ribbons, layers, the framework and the whole structure. The information-based analysis allows estimation of the complexity of the structure as 8.468 bits per atom and 11990.129 bits per cell. According to this analysis, ilmajokite is the third-most complex mineral known to date after ewingite and morrisonite, and is the most complex mineral framework structure, comparable in complexity to paulingite-(Ca) (11 590.532 bits per cell).

2019 ◽  
Vol 74 (3) ◽  
pp. 255-260
Author(s):  
Shahzad Sharif ◽  
Islam Ullah Khan ◽  
Onur Sahin ◽  
Nadia Jabeen ◽  
Saeed Ahmad ◽  
...  

AbstractAn octanuclear compound of cerium(III), [Ce8(Pydc)10(HPydc)4.22H2O].11H2O (1) (Pydc=pyridine-2,6-dicarboxylate anion) was prepared under mild solvothermal conditions and its crystal structure was determined by single-crystal X-ray diffraction. Three kinds of coordination environments are observed, which include: [Ce(Pydc)3], [Ce(Pydc)(H2O)4(O,O)], and [Ce(H2O)7(O,O)]. Each cerium atom in 1 is nine-coordinated but two different geometries are found. The Ce1 and Ce2 atoms exhibit a nearly tricapped trigonal prismatic CeN3O6 geometry, while Ce3 and Ce4 possess CeNO8 and CeO9 coordination polyhedra, which approximate to slightly distorted mono-capped square antiprisms having 12 triangular faces. The Pydc ligands adopt tri-, tetra-, and penta-coordination modes through tridentate chelating and, μ2 and μ3-bridging modes, respectively. The clusters are joined by O–H···O hydrogen bonds to generate 3D supramolecular network. Magnetic susceptibility measurements for 1 indicate that the χm values obey the Curie-Weiss law. The overall magnetic behavior is typical for the presence of antiferromagnetic exchange coupling interactions between the cerium(III) ions.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Ilya V. Kornyakov ◽  
Sergey V. Krivovichev

Single crystals of two novel shchurovskyite-related compounds, K2Cu[Cu3O]2(PO4)4 (1) and K2.35Cu0.825[Cu3O]2(PO4)4 (2), were synthesized by crystallization from gaseous phase and structurally characterized using single-crystal X-ray diffraction analysis. The crystal structures of both compounds are based upon similar Cu-based layers, formed by rods of the [O2Cu6] dimers of oxocentered (OCu4) tetrahedra. The topologies of the layers show both similarities and differences from the shchurovskyite-type layers. The layers are connected in different fashions via additional Cu atoms located in the interlayer, in contrast to shchurovskyite, where the layers are linked by Ca2+ cations. The structures of the shchurovskyite family are characterized using information-based structural complexity measures, which demonstrate that the crystal structure of 1 is the simplest one, whereas that of 2 is the most complex in the family.


2017 ◽  
Vol 73 (8) ◽  
pp. 600-608 ◽  
Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of hydrothermally synthesized aluminium dihydrogen arsenate(V) dihydrogen diarsenate(V), Al(H2AsO4)(H2As2O7), gallium dihydrogen arsenate(V) dihydrogen diarsenate(V), Ga(H2AsO4)(H2As2O7), and diindium bis[dihydrogen arsenate(V)] bis[dihydrogen diarsenate(V)], In2(H2AsO4)2(H2As2O7)2, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of a novel sheet structure type, whereas the third compound crystallizes in a novel framework structure. In all three structures, the basic building units areM3+O6octahedra (M= Al, Ga, In) that are connectedviaone H2AsO4−and two H2As2O72−groups into chains, and furtherviaH2As2O72−groups into layers. In Al/Ga(H2AsO4)(H2As2O7), these layers are interconnected by weak-to-medium–strong hydrogen bonds. In In2(H2AsO4)2(H2As2O7)2, the H2As2O72−groups link the chains in three dimensions, thus creating a framework topology, which is reinforced by weak-to-medium–strong hydrogen bonds. The three title arsenates represent the first compounds containing both H2AsO4−and H2As2O72−groups.


2000 ◽  
Vol 55 (1) ◽  
pp. 60-64
Author(s):  
Melanie Pülm ◽  
Joachim Becht ◽  
Reinhold Tacke

The zwitterionic λ5Si-tetrafluorosilicates F4SiCH2NMe2H (1) and F4SiCH2NMe3 (2) behave as Lewis acids and react with [Me3NH]F (molar ratio 1:1) in aqueous solution to yield the ionic λ6Si-pentafluorosilicates [Me3NH][F5SiCH2NMe2H] (3) and [Me3NH][F5SiCH2NMe3] (4), respectively. These hexacoordinate silicon compounds contain singly charged λ6Si-silicate anions ([F5SiCH2NMe2H]- , [F5SiCH2NMe3]- ) with an SiF5C skeleton. Compounds 3 and 4 were isolated as the crystalline hydrates 3·H2O (yield 80%) and 4·H2O (yield 82%) which were structurally characterized by single-crystal X-ray diffraction. The Si-coordination polyhedra in the crystals of 3·H2O and 4·H2O are slightly distorted octahedra


2020 ◽  
Vol 105 (1) ◽  
pp. 132-135 ◽  
Author(s):  
Luca Bindi ◽  
Aleksandra Bendeliani ◽  
Andrey Bobrov ◽  
Ekaterina Matrosova ◽  
Tetsuo Irifune

Abstract The crystal structure and chemical composition of a crystal of Mg-bearing phase Egg with a general formula M1−x3+Mx2+SiO4H1+x (M3+ = Al, Cr; M2+ = Mg, Fe), where x = 0.35, produced by subsolidus reaction at 24 GPa and 1400 °C of components of subducted oceanic slabs (peridotite, basalt, and sediment), was analyzed by electron microprobe and single-crystal X-ray diffraction. Neglecting the enlarged unit cell and the consequent expansion of the coordination polyhedra (as expected for Mg substitution for Al), the compound was found to be topologically identical to phase Egg, AlSiO3OH, space group P21/n, with lattice parameters a = 7.2681(8), b = 4.3723(5), c = 7.1229(7) Å, β = 99.123(8)°, V = 223.49(4) Å3, and Z = 4. Bond-valence considerations lead to hypothesize the presence of hydroxyl groups only, thereby excluding the presence of the molecular water that would be present in the hypothetical end-member MgSiO3·H2O. We thus demonstrate that phase Egg, considered as one of the main players in the water cycle of the mantle, can incorporate large amounts of Mg in its structure and that there exists a solid solution with a new hypothetical MgSiH2O4 end-member, according to the substitution Al3+ ↔ Mg2+ + H+. The new hypothetical MgSiH2O4 end-member would be a polymorph of phase H, a leading candidate for delivering significant water into the deepest part of the lower mantle.


2014 ◽  
Vol 70 (8) ◽  
pp. i42-i42
Author(s):  
Volodymyr Levytskyy ◽  
Volodymyr Babizhetskyy ◽  
Bohdan Kotur ◽  
Volodymyr Smetana

The crystal structure of the title compound, Tb2Ni7, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaireet al.(1967).C. R. Acad. Sci. Ser. B,265, 1280–1282; Lemaire & Paccard (1969).Bull. Soc. Fr. Mineral. Cristallogr.92, 9–16; Buschow & van der Goot (1970).J. Less-Common Met.22, 419–428], the present redetermination affords refined coordinates and anisotropic displacement parameters for all atoms. A partial occupation for one Tb atom results in the non-stoichiometric composition Tb1.962 (4)Ni7. The title compound adopts the Ce2Ni7structure type and can also be derived from the CaCu5structure type as an intergrowth structure. The asymmetric unit contains two Tb sites (both site symmetries 3m.) and five Ni sites (.m.,mm2, 3m., 3m., -3m.). The two different coordination polyhedra of Tb are a Frank–Kasper polyhedron formed by four Tb and 12 Ni atoms and a pseudo Frank–Kasper polyhedron formed by two Tb and 18 Ni atoms. The four different coordination polyhedra of Ni are Frank–Kasper icosahedra formed by five Tb and seven Ni atoms, four Tb and eight Ni atoms, three Tb and nine Ni atoms, and six Tb and six Ni atoms, respectively.


2008 ◽  
Vol 72 (3) ◽  
pp. 771-783 ◽  
Author(s):  
L. Bindi ◽  
M. D. Welch ◽  
P. Bonazzi ◽  
G. Pratesi ◽  
S. Menchetti

AbstractThe crystal structure of seeligerite, Pb3IO4Cl3, from the San Rafael mine, Sierra Gorda, Chile, was solved in the space group Cmm2, and refined to R = 3.07%. The unit-cell parameters are: a = 7.971(2), b = 7.976(2), c = 27.341(5) Å, V = 1738.3(6) Å3 and Z = 8. The crystal structure consists of a stacking sequence along [001] of square-net layers of O atoms and square-net layers of Cl atoms with Pb+ and I+ cations located in the voids of the packing. As is typical of cations with a stereoactive lone-pair of electrons, Pb2+ and I5+ adopt strongly-asymmetrical configurations. Pb2+ cations occur in a variety of coordination polyhedra, ranging from anticubes and monocapped anticubes to pyramidal ‘one-sided’ coordinations. I5+ is coordinated by a square of four oxygen atoms: I1 and I3 exhibit a ‘one-sided’ coordination, whereas I2 has square-planar coordination.The TEM investigation has revealed additional superlattice reflections (which were not registered by X-ray diffraction (XRD)) in the hk0 diffraction pattern of seeligerite based upon a 0.158 Å-1 square net, which can be interpreted as arising from a 20-cation super-sheet motif (12.6 Å x 12.6 Å), likely related to a further level of Pb-I order superimposed upon the 8-site motif identified by XRD.


1988 ◽  
Vol 41 (2) ◽  
pp. 269 ◽  
Author(s):  
SF Colmanet ◽  
MF Mackay

After reaction of benzene-1,2-dithiol (bdtH2) with ammonium [99Tc] pertechnetate in aqueous alcohol, extraction of the reaction mixture with chloroform yielded wine-red crystals of the title compound, C24H16S8Tc2.CHCl3. The crystal structure of the binuclear complex has been determined by X-ray diffraction. Crystals are triclinic and belong to the space group Pī with a 8.534(1), b 8.842(2), c 11.192(3)Ǻ, α 107.02(2), β 98.13(1), γ 100.60(2)° with Z 1. Refinement on 1524 data measured with Cu Kα radiation converged at R 0.082. The complex has exact Ci point symmetry and pseudo-C2 symmetry. Each technetium atom is coordinated to a trigonal -prismatic array of six sulfur ligand atoms. These arrays are fused through a quadrilateral face defined by the four bridging sulfur atoms of two benzene-1,2- dithiolato ligands to give a Tc2S8 core of D2h pseudo-symmetry. As a Tc - Tc bond [bond length 2.591(3)Ǻ] passes through the mid point of the quadrilateral face, this novel geometry can be described in terms of capped trigonal prisms. The chloroform is disordered.


2020 ◽  
Vol 76 (3) ◽  
pp. 298-301 ◽  
Author(s):  
Ivan Bernal ◽  
Roger A. Lalancette

Chemists of the late 19th century, including Alfred Werner, prepared salts containing either green or violet cations of composition [CoCl2(en)2]+ (en is ethylenediamine, C2H8N2); we now refer to these as trans-dichloro and cis-dichloro species. We have discovered a third salt, purple in color, containing cations of the same elemental composition and whose asymmetric unit composition is [CoCl2(en)2]2Cl2·3H2O, in which the cobalt cations are a cis:trans dichloro pair. Such a discovery would undermine Werner's argument that if only two forms can be prepared, his octahedral theory was proven. Probably because his students never examined their crystals under a microscope, they failed to observe the `third' species, thereby ruining Werner's argument since he relied strictly on color to identify them. That was fortunate since our purple salt would have led him to abandon, or certainly delay, his momentous discovery. Our crystals consist of a 1:1 mixture of the cis and trans cations, thereby sharing the same elemental analysis and conductivity as the single salts, but not their crystal structure, inasmuch as X-ray diffraction had not even been discovered then. Serendipitously, our discovery would have been a great boon to his theoretical acumen, while his `two-color' argument may have doomed him.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1018
Author(s):  
Christian Bäucker ◽  
Rainer Niewa

A new modification of Rb[Al(NH2)4] in space group C2/c, which differs from the known structural modification in the way the [Al(NH2)4]−-tetrahedra are arranged in the surrounding area of the rubidium cation, was obtained from ammonothermal synthesis at 673 K and 680 bar. The crystal structure was determined by Rietveld refinements and further investigated by infrared and Raman spectroscopy. Thermal gravimetric investigations indicate two decomposition steps up to 450 °C, which can be assigned to ammonia leaving the material while the sample liquefies. During the third and final step, volatile rubidium amide is released, leaving nano-scaled cubic AlN behind. Investigating differently aged samples implies decomposition and condensation of amidoaluminate ions already at ambient temperature, which is supported by refinements of single crystal X-ray diffraction data, revealing lower nitrogen amounts than expected. The observed single crystal also exhibits a significantly smaller volume than the reported structures, further supporting the decomposition–condensation mechanism.


Sign in / Sign up

Export Citation Format

Share Document