Hydrogen and halogen bonding in the haloetherification products in chalcone

2019 ◽  
Vol 75 (3) ◽  
pp. 342-347 ◽  
Author(s):  
Aytan R. Asgarova ◽  
Ali N. Khalilov ◽  
Ivan Brito ◽  
Abel M. Maharramov ◽  
Namiq G. Shikhaliyev ◽  
...  

Cooperative action of hydrogen and halogen bonding in the reaction of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-phenylprop-2-en-1-one with HCl or HBr in alcohol medium under microwave irradiation (20 W, 80 °C, 10 min) allows the isolation of the haloetherification products (2S,3S)-3-(3-tert-butyl-5-chloro-4-hydroxyphenyl)-2-chloro-3-ethoxy-1-phenylpropan-1-one, C21H24Cl2O3, (2S,3S)-2-bromo-3-(3-tert-butyl-5-bromo-4-hydroxyphenyl)-3-methoxy-1-phenylpropan-1-one, C20H22Br2O3, and (2S,3S)-2-bromo-3-(3-tert-butyl-5-bromo-4-hydroxyphenyl)-3-ethoxy-1-phenylpropan-1-one, C21H24Br2O3, in good yields. Both types of noncovalent interactions, e.g. hydrogen and halogen bonds, are formed to stabilize the obtained products in the solid state.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Shouvik Chattopadhyay ◽  
Tanmoy Basak ◽  
Antonio Frontera

Two mononuclear iron(III) complexes, [FeL1Cl]∙CH3CN (1) and [FeL2(N3)] (2) {H2L1= N,N′-bis(5-chlorosalicylidene)diethylenetriamine and H2L2= N,N′-bis(5-bromosalicylidene)diethylenetriamine}, have been synthesized and characterized by X-ray crystallographic studies. In the solid state, there are strong...


Author(s):  
Rui Liu ◽  
Yuan Jun Gao ◽  
Wei Jun Jin

Single-crystal X-ray diffraction reveals a series of phosphorescent cocrystals which were assembled by 1,4-diiodotetrafluorobenzene (1,4-DITFB) and either 4,7-dimethyl-1,10-phenanthroline (DMPhe), 4,7-diphenyl-1,10-phenanthroline (DPPhe) or 4,7-dichloro-1,10-phenanthroline (DClPhe)viaC—I...N halogen bonding. These cocrystals, labeled (1), (2) and (3), respectively, are phosphorescent and a distinct change in phosphorescent color can be observed from orange–yellow, green to yellow–green, with well defined vibrational band maxima at 587, 520 and 611 nm for (1), (2) and (3). Based on the dependence of halogen bonding in sites and strength, we discussed the impact of substituents with different electron-withdrawing effects and steric hindrance on intermolecular noncovalent interactions and phosphorescence. The method of inducing and modulating phosphorescence by halogen bonding and other weak non-covalent interactions through changing the substituent groups of molecules should be significant in both theory and the application of optical function materials with predictable and modulated luminescent properties.


Inorganics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 40 ◽  
Author(s):  
Pradeep Varadwaj ◽  
Arpita Varadwaj ◽  
Helder Marques

In addition to the underlying basic concepts and early recognition of halogen bonding, this paper reviews the conflicting views that consistently appear in the area of noncovalent interactions and the ability of covalently bonded halogen atoms in molecules to participate in noncovalent interactions that contribute to packing in the solid-state. It may be relatively straightforward to identify Type-II halogen bonding between atoms using the conceptual framework of σ-hole theory, especially when the interaction is linear and is formed between the axial positive region (σ-hole) on the halogen in one monomer and a negative site on a second interacting monomer. A σ-hole is an electron density deficient region on the halogen atom X opposite to the R–X covalent bond, where R is the remainder part of the molecule. However, it is not trivial to do so when secondary interactions are involved as the directionality of the interaction is significantly affected. We show, by providing some specific examples, that halogen bonds do not always follow the strict Type-II topology, and the occurrence of Type-I and -III halogen-centered contacts in crystals is very difficult to predict. In many instances, Type-I halogen-centered contacts appear simultaneously with Type-II halogen bonds. We employed the Independent Gradient Model, a recently proposed electron density approach for probing strong and weak interactions in molecular domains, to show that this is a very useful tool in unraveling the chemistry of halogen-assisted noncovalent interactions, especially in the weak bonding regime. Wherever possible, we have attempted to connect some of these results with those reported previously. Though useful for studying interactions of reasonable strength, IUPAC’s proposed “less than the sum of the van der Waals radii” criterion should not always be assumed as a necessary and sufficient feature to reveal weakly bound interactions, since in many crystals the attractive interaction happens to occur between the midpoint of a bond, or the junction region, and a positive or negative site.


Author(s):  
Julien Lieffrig ◽  
Olivier Jeannin ◽  
Antoine Vacher ◽  
Dominique Lorcy ◽  
Pascale Auban-Senzier ◽  
...  

Oxidation of diiodoethylenedithiotetrathiafulvalene (EDT-TTF-I2), C8H4I2S6, with the strong oxidizer tetrafluorotetracyanoquinodimethane (TCNQF4), C12F4N4, affords, depending on the crystallization solvent, two polymorphs of the 2:1 charge-transfer salt (EDT-TTF-I2)2(TCNQF4), represented asD2A. In both salts, the TCNQF4is reduced to the radical anion state, and is associated through short C—I...NC halogen bonds to two EDT-TTF-I2molecules. The two polymorphs differ in the solid-state association of these trimericD–A–Dmotifs. In polymorph (I) the trimeric motif is located on an inversion centre, and hence both EDT-TTF-I2molecules have +0.5 charge. Together with segregation of the TTF and TCNQ derivatives into stacks, this leads to a charge-transfer salt with high conductivity. In polymorph (II) two crystallographically independent EDT-TTF-I2molecules bear different charges, close to 0 and +1, as deduced from an established correlation between intramolecular bond lengths and charge. Overlap interactions between the halogen-bondedD0–A^{{-}{\bullet}}–D^{{+}{\bullet}} motifs give rise, in a perpendicular direction, to diamagneticA22−andD0–D22+–D0entities, where the radical species are paired into the bonding combination of respectively the acceptor LUMOs and donor HOMOs. The strikingly different solid-state organization of the halogen-bondedD–A–Dmotifs provides an illustrative example of two modes of face-to-face interaction between π-type radicals, into either delocalized, uniform chains with partial charge transfer and conducting behaviour, or localized association of radicals into face-to-faceA22−andD22+dyads.


CrystEngComm ◽  
2014 ◽  
Vol 16 (10) ◽  
pp. 1893-1903 ◽  
Author(s):  
Pavle Mocilac ◽  
John F. Gallagher

The imide-based trezimide and tennimide macrocycle crystal structures typically aggregate as 1-D chains through C–Br⋯OC/N/π(arene) halogen bonds (withNc≤ 0.90) that dominate the solid-state aggregation process in the absence of classical strong hydrogen bond donors.


2018 ◽  
Vol 74 (7) ◽  
pp. 816-829 ◽  
Author(s):  
Hina Andleeb ◽  
Imtiaz Khan ◽  
Antonio Bauzá ◽  
Muhammad Nawaz Tahir ◽  
Jim Simpson ◽  
...  

To explore the operational role of noncovalent interactions in supramolecular architectures with designed topologies, a series of solid-state structures of 2- and 4-formylphenyl 4-substituted benzenesulfonates was investigated. The compounds are 2-formylphenyl 4-methylbenzenesulfonate, C14H12O4S, 3a, 2-formylphenyl 4-chlorobenzenesulfonate, C13H9ClO4S, 3b, 2-formylphenyl 4-bromobenzenesulfonate, C13H9BrO4S, 3c, 4-formylphenyl 4-methylbenzenesulfonate, C14H12O4S, 4a, 4-formylphenyl 4-chlorobenzenesulfonate, 4b, C13H9ClO4S, and 4-formylphenyl 4-bromobenzenesulfonate, C13H9BrO4S, 4c. The title compounds were synthesized under basic conditions from salicylaldehyde/4-hydroxybenzaldehydes and various aryl sulfonyl chlorides. Remarkably, halogen-bonding interactions are found to be important to rationalize the solid-state crystal structures. In particular, the formation of O...X (X = Cl and Br) and type I X...X halogen-bonding interactions have been analyzed by means of density functional theory (DFT) calculations and characterized using Bader's theory of `atoms in molecules' and molecular electrostatic potential (MEP) surfaces, confirming the relevance and stabilizing nature of these interactions. They have been compared to antiparallel π-stacking interactions that are formed between the arylsulfonates.


Author(s):  
Maciej Bujak

Tetrachlorobenzenes represent one of the best known, but not yet fully understood, group of isomers of the structure–melting point relationship. The differences in melting temperatures of these structurally related compounds were rationalized in terms of the hierarchy and nature of formed noncovalent interactions, and the molecular aggregation that is influenced by molecular symmetry. The highest melting point is associated with the highly symmetric 1,2,4,5-tetrachlorobenzene isomer. The structures of less symmetrical 1,2,3,4-tetrachlorobenzene and 1,2,3,5-tetrachlorobenzene, determined at 270 and 90 K, show a distinct pattern of halogen bonds, characterized by the different numbers and types of interactions. The evolution of Cl...Cl/H distances with temperature indicates the attractive character of intermolecular interactions and their importance to the structural and thermodynamic parameters of isomeric compounds. The favoured Cl...Cl halogen bonds were found to play a decisive role in differentiating the melting temperatures of tetrachlorobenzene isomers. It was also found that, besides the molecular symmetry and ability to form specific intermolecular interactions, both the type and the distribution of interactions are the important factors responsible for the melting behaviour of the studied isomers. The observed preferences, in tetrachlorobenzenes, for the formation of specific noncovalent interactions correspond to the distribution of calculated partial atomic charges and to the magnitudes of electrostatic potential on the molecular surfaces as well as correlate with the enthalpy of melting parameters.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1149
Author(s):  
Denisa Dumitrescu ◽  
Sergiu Shova ◽  
Isabela C. Man ◽  
Mino R. Caira ◽  
Marcel Mirel Popa ◽  
...  

5-Iodo-1-arylpyrazoles are interesting templates for investigating the halogen bond propensity in small molecules other than the already well-known halogenated molecules such as tetrafluorodiiodobenzene. Herein, we present six compounds with different substitution on the aryl ring attached at position 1 of the pyrazoles and investigate them in the solid state in order to elucidate the halogen bonding significance to the crystallographic landscape of such molecules. The substituents on the aryl ring are generally combinations of halogen atoms (Br, Cl) and various alkyl groups. Observed halogen bonding types spanned by these six 5-iodopyrazoles included a wide variety, namely, C–I⋯O, C–I⋯π, C–I⋯Br, C–I⋯N and C–Br⋯O interactions. By single crystal X-ray diffraction analysis combined with the descriptive Hirshfeld analysis, we discuss the role and influence of the halogen bonds among the intermolecular interactions.


2017 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized. As in previous studies, we find that the most efficient way to obtain HLCs is to combine (T) from conventional CCSD(T) calculations with explicitly correlated CCSD-F12–MP2-F12 differences.</p>


Compounds ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 58-74
Author(s):  
Emmanuel Aubert ◽  
Emmanuel Wenger ◽  
Paola Peluso ◽  
Victor Mamane

Non-symmetrical chiral 4,4′-bipyridines have recently found interest in organocatalysis and medicinal chemistry. In this regard, the development of efficient methods for their synthesis is highly desirable. Herein, a series of non-symmetrical atropisomeric polyhalogenated 4,4′-bipyridines were prepared and further functionalized by using cross-coupling reactions. The desymmetrization step is based on the N-oxidation of one of the two pyridine rings of the 4,4′-bipyridine skeleton. The main advantage of this methodology is the possible post-functionalization of the pyridine N-oxide, allowing selective introduction of chlorine, bromine or cyano groups in 2- and 2′-postions of the chiral atropisomeric 4,4′-bipyridines. The crystal packing in the solid state of some newly prepared derivatives was analyzed and revealed the importance of halogen bonds in intermolecular interactions.


Sign in / Sign up

Export Citation Format

Share Document