scholarly journals A Novel 3d-4f CoII-GdIII system with 4,5-imidazoledicarboxylate and oxalate

2014 ◽  
Vol 70 (a1) ◽  
pp. C1721-C1721
Author(s):  
Andrés Vega ◽  
Carlos Cruz ◽  
Verónica Paredes-García ◽  
Evgenia Spodine ◽  
Diego Venegas-Yazigi

The challenges of designing and synthesizing new materials, the complexity of their structures, and their potential physical properties have continued to attract a great deal of interest. The combination of organic and inorganic components into the same molecular backbone has captivated many researchers, and as a consequence of the multiple choices of the components and also of the used synthetic strategies, a wide variety of advanced materials has been obtained. In many cases, an increase in structural complexity gives rise to new properties, which cannot be foreseen on the basis of the single constituting moieties. Therefore, the assembly of different components, or molecular fragments, may give rise to new materials that exhibit interesting and useful physical and chemical properties in the condensed phase.1 From a structural and synthetic point of view, the literature shows that a wide variety of polymetallic systems ranging from 0D to 3D structures have been rationally designed and synthesized by the appropriate selection of the metal centers and organic building blocks, as well as of the reaction pathways.2 In this work, we will inform the synthesis and structural characterization of a novel 3d-4f bimetallic system: {[Co(H2O)2(ImDC)Gd(ox)2(H2O)]·2H2O}n. (ImDC: 4,5-imidazoledicarboxylate; ox: oxalate). The structure displays CoII cations having an approximately octahedral environment completed by two N,O-ImDC ligands and two water molecules, while the GdIII cations displays nine coordination completed exclusively by oxygen atoms coming from a water molecule and oxalate and ImDC anions (Figure1, left). The structure defines a covalent tridimensional lattice where two water molecules by formula are trapped inside the cavities left by this arrangement (Figure1, right). Figure 1: Structural diagram for the basic bimetallic unit Co(H2O)2(ImDC)Gd(ox)2(H2O) (left) and the packing showing trapped water molecules {[Co(H2O)2(ImDC)Gd(ox)2(H2O)]·2H2O}n (right). Acknowledgements: The authors acknowledge financial support from FONDECYT 1130643, Financiamiento Basal, FB0807. C.C. thanks CONICYT Fellowship.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1223-C1223
Author(s):  
Jason Benedict ◽  
Ian Walton ◽  
Dan Patel ◽  
Jordan Cox

Metal-organic Frameworks (MOFs) remain an extremely active area of research given the wide variety of potential applications and the enormous diversity of structures that can be created from their constituent building blocks. While MOFs are typically employed as passive materials, next-generation materials will exhibit structural and/or electronic changes in response to applied external stimuli including light, charge, and pH. Herein we present recent results in which advanced photochromic diarylethenes are combined with MOFs through covalent and non-covalent methods to create photo-responsive permanently porous crystalline materials. This presentation will describe the design, synthesis, and characterization of next-generation photo-switchable diarylethene based ligands which are subsequently used to photo-responsive MOFs. These UBMOF crystals are, by design, isostructural with previously reported non-photoresponsive frameworks which enables a systematic comparison of their physical and chemical properties. While the photoswitching of the isolated ligand in solution is fully reversible, the cycloreversion reaction is suppressed in the UBMOF single crystalline phase. Spectroscopic evidence for thermally induced cycloreversion will be presented, as well as a detailed analysis addressing the limits of X-ray diffraction techniques applied to these systems.


2020 ◽  
Author(s):  
Julia Tagiryanovna Harisova ◽  
Rail Idiatovich Saitov ◽  
Rinat Gazizyanovich Abdeev

This article considers the problem of processing and disposing of oil sludge of various origins. Large oil companies are concerned about the problem of incomplete processing of oil sludge. The most hazardous from an environmental point of view include oil sludge formed at all stages of oil production, transportation and refining. In recent years, oil-producing enterprises have introduced various technological solutions aimed at waste management into production, but there is no single method for processing oil sludge for the purpose of neutralization and disposal. All known oil sludge processing technologies by processing methods can be divided into the following groups: thermal - burning in open barns, furnaces of various types, obtaining bitumen residues; physical - burial in special cemeteries, separation in a centrifugal field, vacuum filtration and filtration under pressure; physical and chemical - the use of specially selected reagents that change the physical and chemical properties, followed by processing on special equipment; and biological - microbiological decomposition in the soil directly in storage, biothermal decomposition. Each of them, while having certain advantages, also has its drawbacks. For over 50 years, microwave heating technology has been used in industry. To present the advantages of this method, one needs to turn to the theory of microwave heating. Keywords: oil sludge, oil waste, influence of electromagnetic fields, water-in-oil emulsions


2013 ◽  
Vol 816-817 ◽  
pp. 65-69
Author(s):  
Yi Zhang

New materials play an important part in today high and new technology.Superconducting nanomaterial has become the most vibrant in new material research due to its unique physical and chemical properties. This paper focuses on how small-size effect affects superconducting transition temperature, and summarizes the concrete preparation methods of superconducting nanomaterials, hoping to provide a reference for material researchers.


2021 ◽  
Vol 118 (49) ◽  
pp. e2109241118
Author(s):  
Linh N. V. Le ◽  
Gwendolyn A. Bailey ◽  
Anna G. Scott ◽  
Theodor Agapie

Nitrogen-fixing organisms perform dinitrogen reduction to ammonia at an Fe-M (M = Mo, Fe, or V) cofactor (FeMco) of nitrogenase. FeMco displays eight metal centers bridged by sulfides and a carbide having the MFe7S8C cluster composition. The role of the carbide ligand, a unique motif in protein active sites, remains poorly understood. Toward addressing how the carbon bridge affects the physical and chemical properties of the cluster, we isolated synthetic models of subsite MFe3S3C displaying sulfides and a chelating carbyne ligand. We developed synthetic protocols for structurally related clusters, [Tp*M’Fe3S3X]n−, where M’ = Mo or W, the bridging ligand X = CR, N, NR, S, and Tp* = Tris(3,5-dimethyl-1-pyrazolyl)hydroborate, to study the effects of the identity of the heterometal and the bridging X group on structure and electrochemistry. While the nature of M’ results in minor changes, the chelating, μ3-bridging carbyne has a large impact on reduction potentials, being up to 1 V more reducing compared to nonchelating N and S analogs.


Science ◽  
2020 ◽  
Vol 368 (6491) ◽  
pp. 642-648 ◽  
Author(s):  
Wenfeng Jiang ◽  
Zhi-bei Qu ◽  
Prashant Kumar ◽  
Drew Vecchio ◽  
Yuefei Wang ◽  
...  

The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. Although empirical observations of complex nanoassemblies are abundant, the physicochemical mechanisms leading to their geometrical complexity are still puzzling, especially for nonuniformly sized components. We report the self-assembly of hierarchically organized particles (HOPs) from polydisperse gold thiolate nanoplatelets with cysteine surface ligands. Graph theory methods indicate that these HOPs, which feature twisted spikes and other morphologies, display higher complexity than their biological counterparts. Their intricate organization emerges from competing chirality-dependent assembly restrictions that render assembly pathways primarily dependent on nanoparticle symmetry rather than size. These findings and HOP phase diagrams open a pathway to a large family of colloids with complex architectures and unusual chiroptical and chemical properties.


2020 ◽  
Vol 6 (19) ◽  
pp. eaba5337 ◽  
Author(s):  
A. Al Harraq ◽  
J. G. Lee ◽  
B. Bharti

Suprastructures at the colloidal scale must be assembled with precise control over local interactions to accurately mimic biological complexes. The toughest design requirements include breaking the symmetry of assembly in a simple and reversible fashion to unlock functions and properties so far limited to living matter. We demonstrate a simple experimental technique to program magnetic field–induced interactions between metallodielectric patchy particles and isotropic, nonmagnetic “satellite” particles. By controlling the connectivity, composition, and distribution of building blocks, we show the assembly of three-dimensional, multicomponent supraparticles that can dynamically reconfigure in response to change in external field strength. The local arrangement of building blocks and their reconfigurability are governed by a balance of attraction and repulsion between oppositely polarized domains, which we illustrate theoretically and tune experimentally. Tunable, bulk assembly of colloidal matter with predefined symmetry provides a platform to design functional microstructured materials with preprogrammable physical and chemical properties.


2021 ◽  
Author(s):  
Toru Yada ◽  
Masanao Abe ◽  
Tatsuaki Okada ◽  
Aiko Nakato ◽  
Kasumi Yogata ◽  
...  

Abstract C-type asteroids are considered to be primitive small Solar-System bodies enriched in water and organics, providing clues for understanding the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing and on-asteroid measurements with Hayabusa2, but further studies are expected by direct analyses of returned samples. Here we describe the bulk sample mainly consisting of rugged and smooth particles of millimeter to submillimeter size, preserving physical and chemical properties as they were on the asteroid. The particle size distribution is found steeper than that of surface boulders11. Estimated grain densities of the samples have a peak around 1350 kg m-3, which is lower than that of meteorites suggests a high micro-porosity down to millimeter-scale, as estimated at centimeter-scale by thermal measurements. The extremely dark optical to near-infrared reflectance and the spectral profile with weak absorptions at 2.7 and 3.4 microns implying carbonaceous composition with indigenous aqueous alteration, respectively, match the global average of Ryugu, confirming the sample’s representativeness. Together with the absence of chondrule and Ca-Al-rich inclusion of larger than sub-mm, these features indicate Ryugu is most similar to CI chondrites but with darker, more porous and fragile characteristics.


2010 ◽  
Vol 16 (1) ◽  
pp. 68-70
Author(s):  
D. S. Astapenkov

Vertebroplasty was performed in 8 women in the age of from 43 till 80 years. The indication to intervention in one case was metastatic involvement, in four cases - osteoporotic vertebral fractures; to three patients vertebroplasty was performed in occasion of vertebral body gemangioma. The results of this study revealed, that for increase of safety the authors recommend to carry out the vertebroplasty under local anesthesia at presence of an anesthesiologist for possible additional intravenous anesthesia. The safest from the point of view of extravertebral distributions of cement is transpedicular access; flebospondylography does not allow predicting reliably distribution of cement in view of significant distinction of physical and chemical properties of entered substances however can be used for a tentative estimation of venous outflow at tumor process in vertebral bodies.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Qing Liao ◽  
Tingting Song

In the development of modern society, many new materials and technologies have been integrated into the development of various industries. As a new type of two-dimensional carbon nanomaterials, graphene has great advantages in physical and chemical properties and is widely used in various fields of development. Among them, the electrochemical method is one of the important ways to prepare graphene materials, which has the characteristics of quickness and environmental protection, and can effectively produce a large amount of high-quality graphene and its composite materials. Based on this, the paper introduces the preparation method of graphene materials and studies the application of graphene materials in the field of electrochemistry.


Author(s):  
Elisabeth Sitte ◽  
Brendan Twamley ◽  
nitika grover ◽  
Mathias Senge

The bicyclo[1.1.1]pentane (BCP) unit exhibits special physical and chemical properties and is under scrutiny as a bioisostere in drug molecules. We employed methodologies for the synthesis of different BCP triazole building blocks from one precursor, 1-azido-3-iodobicyclo[1.1.1]pentane, by Cu(I)-catalyzed 1,3-dipolar cycloaddition (“click”) reactions and integrated cycloaddition-Sonogashira coupling reactions. Thereby, we accessed three classes of substituted BCP derivatives: 1,4-disubstituted triazoles, 5-iodo-1,4,5-trisubstituted triazoles and 5-alkynylated 1,4,5-trisubstituted triazoles. This gives entry to the synthesis of multiply substituted BCP triazoles either on a modular or a one-pot basis. These methodologies were further utilized for appending large chromophoric porphyrin moieties onto the BCP core.


Sign in / Sign up

Export Citation Format

Share Document