scholarly journals Band-gap depth profile of Cu(In1−x Ga x )Se2 absorbing layer in thin-film solar cell by glancing-incidence X-ray diffraction

2019 ◽  
Vol 75 (a2) ◽  
pp. e323-e323
Author(s):  
Yong-Il Kim ◽  
Ki-Bok Kim
2010 ◽  
Vol 25 (12) ◽  
pp. 2426-2429 ◽  
Author(s):  
Guangjun Wang ◽  
Gang Cheng ◽  
Binbin Hu ◽  
Xiaoli Wang ◽  
Shaoming Wan ◽  
...  

In this paper, polycrystalline CuIn(SxSe1–x)2 thin films with tunable x and Eg (band gap) values were prepared by controlling the sulfurization temperature (T) of CuInSe2 thin films. X-ray diffraction indicated the CuIn(SxSe1–x)2 films exhibited a homogeneous chalcopyrite structure. When T increases from 150 to 500 °C, x increases from 0 to 1, and Eg increases from 0.96 to 1.43 eV. The relations between x and Eg and the sulfurization process of CuIn(SxSe1–x)2 thin films have been discussed. This work provides an easy and low-cost technique for preparing large area absorber layers of solar cell with tunable Eg.


2012 ◽  
Vol 534 ◽  
pp. 156-159 ◽  
Author(s):  
Dong Hua Fan ◽  
Rong Zhang ◽  
Hui Ren Peng

Cu2ZnSnS4 (CZTS) thin films are prepared by sulfurizing the precursors deposited by vacuum evaporation methods. The samples sulfurized at 500°C for 3h shows the strong (112) diffraction peak at 28.45˚, suggesting the successful synthesis of CZTS thin films. The X-ray diffraction shows that CZTS thin film prepared in Sn-poor condition have the best crystallinity. The Sn-dependent crystallite size was calculated to be 19.53-21.03 nm. In addition, we found that the optical band gap with various Sn contents can be modulated at 1.48-1.85 eV


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Claudia Cancellieri ◽  
Daniel Ariosa ◽  
Aleksandr V. Druzhinin ◽  
Yeliz Unutulmazsoy ◽  
Antonia Neels ◽  
...  

Thin films generally contain depth-dependent residual stress gradients, which influence their functional properties and stability in harsh environments. An understanding of these stress gradients and their influence is crucial for many applications. Standard methods for thin-film stress determination only provide average strain values, thus disregarding possible variation in strain/stress across the film thickness. This work introduces a new method to derive depth-dependent strain profiles in thin films with thicknesses in the submicrometre range by laboratory-based in-plane grazing X-ray diffraction, as applied to magnetron-sputtering-grown polycrystalline Cu thin films with different thicknesses. By performing in-plane grazing diffraction analysis at different incidence angles, the in-plane lattice constant depth profile of the thin film can be resolved through a dedicated robust data processing procedure. Owing to the underlying intrinsic difficulties related to the inverse Laplace transform of discrete experimental data sets, four complementary procedures are presented to reliably extract the strain depth profile of the films from the diffraction data. Surprisingly, the strain depth profile is not monotonic and possesses a complex shape: highly compressive close to the substrate interface, more tensile within the film and relaxed close to the film surface. The same strain profile is obtained by the four different data evaluation methods, confirming the validity of the derived depth-dependent strain profiles as a function of the film thickness. Comparison of the obtained results with the average in-plane stresses independently derived by the standard stress analysis method in the out-of-plane diffraction geometry validates the solidity of the proposed method.


2020 ◽  
Vol 17 (4) ◽  
pp. 527-533
Author(s):  
Mohsen Sajadnia ◽  
Sajjad Dehghani ◽  
Zahra Noraeepoor ◽  
Mohammad Hossein Sheikhi

Purpose The purpose of this study is to design and optimize copper indium gallium selenide (CIGS) thin film solar cells. Design/methodology/approach A novel bi-layer CIGS thin film solar cell based on SnS is designed. To improve the performance of the CIGS based thin film solar cell a tin sulfide (SnS) layer is added to the structure, as back surface field and second absorbing layer. Defect recombination centers have a significant effect on the performance of CIGS solar cells by changing recombination rate and charge density. Therefore, performance of the proposed structure is investigated in two stages successively, considering typical and maximum reported trap density for both CIGS and SnS. To achieve valid results, the authors use previously reported experimental parameters in the simulations. Findings First by considering the typical reported trap density for both SnS and CIGS, high efficiency of 36%, was obtained. Afterward maximum reported trap densities of 1 × 1019 and 5.6 × 1015 cm−3 were considered for SnS and CIGS, respectively. The efficiency of the optimized cell is 27.17% which is achieved in CIGS and SnS thicknesses of cell are 0.3 and 0.1 µm, respectively. Therefore, even in this case, the obtained efficiency is well greater than previous structures while the absorbing layer thickness is low. Originality/value Having results similar to practical CIGS solar cells, the impact of the defects of SnS and CIGS layers was investigated. It was found that affixing SnS between CIGS and Mo layers causes a significant improvement in the efficiency of CIGS thin-film solar cell.


Sign in / Sign up

Export Citation Format

Share Document