Quasicrystal-related mosaics with periodic lattices interlaid with aperiodic tiles

2020 ◽  
Vol 76 (2) ◽  
pp. 137-144
Author(s):  
Zhanbing He ◽  
Yihan Shen ◽  
Haikun Ma ◽  
Junliang Sun ◽  
Xiuliang Ma ◽  
...  

Quasicrystals, which have long-range orientational order without translational symmetry, are incompatible with the theory of conventional crystals, which are characterized by periodic lattices and uniformly repeated unit cells. Reported here is a novel quasicrystal-related solid state observed in two Al–Cr–Fe–Si alloys, which can be described as a mosaic of aperiodically distributed unit tiles in translationally periodic structural blocks. This new type of material possesses the opposing features of both conventional crystals and quasicrystals, which might trigger wide interest in theory, experiments and the potential applications of this type of material.

1984 ◽  
Vol 53 (20) ◽  
pp. 1951-1953 ◽  
Author(s):  
D. Shechtman ◽  
I. Blech ◽  
D. Gratias ◽  
J. W. Cahn

MRS Bulletin ◽  
1997 ◽  
Vol 22 (11) ◽  
pp. 34-39 ◽  
Author(s):  
Daniel J. Sordelet ◽  
Jean Marie Dubois

For decades scientists have accepted the premise that solid matter can only order in two ways: amorphous (or glassy) like window glass or crystalline with atoms arranged according to translational symmetry. The science of crystallography, now two centuries old, was able to relate in a simple and efficient way all atomic positions within a crystal to a frame of reference in which a single unit cell was defined. Positions within the crystal could all be deduced from the restricted number of positions in the unit cell by translations along vectors formed by a combination of integer numbers of unit vectors of the reference frame. Of course disorder, which is always present in solids, could be understood as some form of disturbance with respect to this rule of construction. Also amorphous solids were naturally referred to as a full breakdown of translational symmetry yet preserving most of the short-range order around atoms. Incommensurate structures, or more simply modulated crystals, could be understood as the overlap of various ordering potentials not necessarily with commensurate periodicities.For so many years, no exception to the canonical rule of crystallography was discovered. Any crystal could be completely described using one unit cell and its set of three basis vectors. In 1848 the French crystallographer Bravais demonstrated that only 14 different ways of arranging atoms exist in three-dimensional space according to translational symmetry. This led to the well-known cubic, hexagonal, tetragonal, and associated structures. Furthermore the dihedral angle between pairs of faces of the unit cell cannot assume just any number since an integer number of unit cells must completely fill space around an edge.


2020 ◽  
Vol 13 (5) ◽  
pp. 1429-1461 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xiaofei Yang ◽  
Keegan R. Adair ◽  
Changhong Wang ◽  
...  

This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.


2018 ◽  
Author(s):  
Julia Miguel-Donet ◽  
Javier López-Cabrelles ◽  
Nestor Calvo Galve ◽  
Eugenio Coronado ◽  
Guillermo Minguez Espallargas

<p>Modification of the magnetic properties in a solid-state material upon external stimulus has attracted much attention in the recent years for their potential applications as switches and sensors. Within the field of coordination polymers, gas sorption studies typically focus on porous solids, with the gas molecules accommodating in the channels. Here we present a 1D non-porous coordination polymer capable of incorporating HCl gas molecules, which not only causes a reordering of its atoms in the solid state but also provokes dramatic changes in the magnetic behaviour. Subsequently, a further solid-gas transformation can occur with the extrusion of HCl gas molecules causing a second structural rearrangement which is also accompanied by modification in the magnetic path between the metal centres. Unequivocal evidence of the two-step magnetostructural transformation is provided by X-ray single-crystal diffraction.</p>


2021 ◽  
pp. 100435
Author(s):  
Yan Wang ◽  
Noura Dawas Alkhaldi ◽  
Nil Kanatha Pandey ◽  
Lalit Chudal ◽  
Lingyun Wang ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Cheng Li ◽  
Yu Hui Huang ◽  
Jian-Jun Wang ◽  
Bo Wang ◽  
Yong Jun Wu ◽  
...  

AbstractSolid-state refrigeration which is environmentally benign has attracted considerable attention. Mechanocaloric (mC) materials, in which the phase transitions can be induced by mechanical stresses, represent one of the most promising types of solid-state caloric materials. Herein, we have developed a thermodynamic phenomenological model and predicted extraordinarily large elastocaloric (eC) strengths for the (111)-oriented metal-free perovskite ferroelectric [MDABCO](NH4)I3 thin-films. The predicted room temperature isothermal eC ΔSeC/Δσ (eC entropy change under unit stress change) and adiabatic eC ΔTeC/Δσ (eC temperature change under unit stress change) for [MDABCO](NH4)I3 are −60.0 J K−1 kg−1 GPa−1 and 17.9 K GPa−1, respectively, which are 20 times higher than the traditional ferroelectric oxides such as BaTiO3 thin films. We have also demonstrated that the eC performance can be improved by reducing the Young’s modulus or enhancing the thermal expansion coefficient (which could be realized through chemical doping, etc.). We expect these discoveries to spur further interest in the potential applications of metal-free organic ferroelectrics materials towards next-generation eC refrigeration devices.


2016 ◽  
Vol 4 (38) ◽  
pp. 9027-9035 ◽  
Author(s):  
Daqin Chen ◽  
Weiwei Wu ◽  
Yongjun Yuan ◽  
Yang Zhou ◽  
Zhongyi Wan ◽  
...  

Nitrogen-doped carbon dots with multi-state visible absorption and full-color blue/yellow/red emissions are synthesized, and show potential applications in solid-state-lighting.


Sign in / Sign up

Export Citation Format

Share Document