scholarly journals On single-crystal total scattering data reduction and correction protocols for analysis in direct space

2021 ◽  
Vol 77 (6) ◽  
pp. 611-636
Author(s):  
Robert J. Koch ◽  
Nikolaj Roth ◽  
Yiu Liu ◽  
Oleh Ivashko ◽  
Ann-Christin Dippel ◽  
...  

Data reduction and correction steps and processed data reproducibility in the emerging single-crystal total-scattering-based technique of three-dimensional differential atomic pair distribution function (3D-ΔPDF) analysis are explored. All steps from sample measurement to data processing are outlined using a crystal of CuIr2S4 as an example, studied in a setup equipped with a high-energy X-ray beam and a flat-panel area detector. Computational overhead as pertains to data sampling and the associated data-processing steps is also discussed. Various aspects of the final 3D-ΔPDF reproducibility are explicitly tested by varying the data-processing order and included steps, and by carrying out a crystal-to-crystal data comparison. Situations in which the 3D-ΔPDF is robust are identified, and caution against a few particular cases which can lead to inconsistent 3D-ΔPDFs is noted. Although not all the approaches applied herein will be valid across all systems, and a more in-depth analysis of some of the effects of the data-processing steps may still needed, the methods collected herein represent the start of a more systematic discussion about data processing and corrections in this field.

2003 ◽  
Vol 797 ◽  
Author(s):  
Koichi Awazu ◽  
Makoto Fujimaki ◽  
Yoshimichi Ohki ◽  
Tetsuro Komatsubara

ABSTRACTWe have developed a nano-micro structure fabrication method in rutile TiO2 single crystal by use of swift heavy-ion irradiation. The area where ions heavier than Cl ion accelerated with MeV-order high energy were irradiated was well etched by hydrofluoric acid, by comparison etching was not observed in the pristine TiO2 single crystal. Noticed that the irradiated area could be etched to a depth at which the electronic stopping power of the ion decayed to a value of 6.2keV/nm. We also found that the value of the electronic stopping power was increased, eventually decreased against depth in TiO2 single crystal with, e.g. 84.5MeV Ca ion. Using such a beam, inside of TiO2 single crystal was selectively etched with 20% hydrofluoric acid, while the top surface of TiO2 single crystal subjected to irradiation was not etched. Roughness of the new surface created in the single crystal was within 7nm with the atomic forth microscopy measurement.


2015 ◽  
Vol 30 (S1) ◽  
pp. S65-S69 ◽  
Author(s):  
Giorgia Confalonieri ◽  
Monica Dapiaggi ◽  
Marco Sommariva ◽  
Milen Gateshki ◽  
Andy N. Fitch ◽  
...  

Total scattering data of nanocrystalline gahnite (ZnAl2O4, 2–3 nm) have been collected with three of the most commonly used instruments: (i) ID31 high-resolution diffractometer at the European Synchrotron Radiation Facility (ESRF) (Qmax = 22 Å−1); (ii) ID11 high-energy beamline at the ESRF (Qmax = 26.6 Å−1); and (iii) Empyrean laboratory diffractometer by PANalytical with molybdenum anode X-ray tube (Qmax = 17.1 Å−1). Pair distribution functions (PDFs) for each instrument data-set have been obtained, changing some of the parameters, by PDFgetX3 software, with the aim of testing the software in the treatment of different total scattering data. The material under analysis has been chosen for its nanometric (and possibly disordered) nature, to give rise to a challenge for all the diffractometers involved. None of the latter should have a clear advantage. The PDF and F(Q) functions have been visually compared, and then the three PDF sets have been used for refinements by means of PDFgui suite. All the refinements have been made exactly in the same way for the sake of a fair comparison. Small differences could be observed in the experimental PDFs and the derived results, but none of them seemed to be significant.


2018 ◽  
Vol 74 (11) ◽  
pp. 1041-1052 ◽  
Author(s):  
Naomine Yano ◽  
Taro Yamada ◽  
Takaaki Hosoya ◽  
Takashi Ohhara ◽  
Ichiro Tanaka ◽  
...  

The STARGazer data-processing software is used for neutron time-of-flight (TOF) single-crystal diffraction data collected using the IBARAKI Biological Crystal Diffractometer (iBIX) at the Japan Proton Accelerator Research Complex (J-PARC). This software creates hkl intensity data from three-dimensional (x, y, TOF) diffraction data. STARGazer is composed of a data-processing component and a data-visualization component. The former is used to calculate the hkl intensity data. The latter displays the three-dimensional diffraction data with searched or predicted peak positions and is used to determine and confirm integration regions. STARGazer has been developed to make it easier to use and to obtain more accurate intensity data. For example, a profile-fitting method for peak integration was developed and the data statistics were improved. STARGazer and its manual, containing installation and data-processing components, have been prepared and provided to iBIX users. This article describes the status of the STARGazer data-processing software and its data-processing algorithms.


IUCrJ ◽  
2015 ◽  
Vol 2 (5) ◽  
pp. 481-489 ◽  
Author(s):  
Kirsten M. Ø. Jensen ◽  
Anders B. Blichfeld ◽  
Sage R. Bauers ◽  
Suzannah R. Wood ◽  
Eric Dooryhée ◽  
...  

By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The `tfPDF' method is illustrated through studies of as-deposited (i.e.amorphous) and crystalline FeSb3films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.


2014 ◽  
Vol 644-650 ◽  
pp. 803-806
Author(s):  
Kai Min Pang ◽  
Ying Zhang ◽  
Xin Shi ◽  
Wen Jie Zhao

For realizing the three-dimensional display of machine parts, in UG5.0 graphic drawing environment, it provides an interactive experimental method to carry out the display of IGES graphics, taken as the data-exchanged interface. Based on depth analysis of IGES, with VC++6.0, the information of all figures could be obtained. Through data processing, three-dimensional data of rotary entity could be generated, which is based on 3D data of lathe turning IGES rotary entity. Afterwards, OpenGL graphic processing technologies (with light, material, textures, et al.) were applied on the three-dimensional display of graphics input from files or program modules. Finally the parts designer could get a full view of machine parts, going on with some proper modifications.


2005 ◽  
Vol 38 (4) ◽  
pp. 639-647 ◽  
Author(s):  
T. R. Welberry ◽  
M. J. Gutmann ◽  
Hyungje Woo ◽  
D. J. Goossens ◽  
Guangyong Xu ◽  
...  

Full three-dimensional diffuse neutron scattering data have been recorded from a single crystal of Pb(Zn1/3Nb2/3)O3(PZN) at 300 K using the time-of-flight Laue technique on the SXD single-crystal instrument at ISIS. The data show a series of diffuse rods of scattering oriented parallel to each of the six 〈1 1 0〉 crystal directions. Monte Carlo simulation has been used to demonstrate that the diffuse rods are caused by planar nanodomains oriented normal to the 〈1 1 0〉 directions. Within these domains, there are correlated displacements of the atoms away from their average site positions. In order to explain the systematic absence of some rods of scattering in the (h k 1) data but the presence of all rods in the (h k 0) data, it is necessary that the displacement of an O atom is of opposite sign to that of its neighbouring Pb atoms. This is explained in terms of a model based on the fact that Pb2+possesses a lone pair of electrons, giving the Pb ion directionality.


2011 ◽  
Vol 44 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Katharine Page ◽  
Taylor C. Hood ◽  
Thomas Proffen ◽  
Reinhard B. Neder

High-energy X-ray and spallation neutron total scattering data provide information about each pair of atoms in a nanoparticle sample, allowing for quantitative whole-particle structural modeling based on pair distribution function analysis. The realization of this capability has been hindered by a lack of versatile tools for describing complex finite structures. Here, the implementation of whole-particle refinement for complete nanoparticle systems is described within two programs,DISCUSandDIFFEV, and the diverse capabilities they present are demonstrated. The build-up of internal atomic structure (including defects, chemical ordering and other types of disorder), and nanoparticle size, shape and architecture (including core–shell structures, surface relaxation and ligand capping), are demonstrated using the programDISCUS. The structure refinement of a complete nanoparticle system (4 nm Au particles with organic capping ligands at the surface), based on neutron pair distribution function data, is demonstrated usingDIFFEV, a program using a differential evolutionary algorithm to generate parameter values. These methods are a valuable addition to other probes appropriate for nanomaterials, adaptable to a diverse and complex set of materials systems, and extendable to additional data-set types.


Author(s):  
H. Banzhof ◽  
I. Daberkow

A Philips EM 420 electron microscope equipped with a field emission gun and an external STEM unit was used to compare images of single crystal surfaces taken by conventional reflection electron microscopy (REM) and scanning reflection electron microscopy (SREM). In addition an angle-resolving detector system developed by Daberkow and Herrmann was used to record SREM images with the detector shape adjusted to different details of the convergent beam reflection high energy electron diffraction (CBRHEED) pattern.Platinum single crystal spheres with smooth facets, prepared by melting a thin Pt wire in an oxyhydrogen flame, served as objects. Fig. 1 gives a conventional REM image of a (111)Pt single crystal surface, while Fig. 2 shows a SREM record of the same area. Both images were taken with the (555) reflection near the azimuth. A comparison shows that the contrast effects of atomic steps are similar for both techniques, although the depth of focus of the SREM image is reduced as a result of the large illuminating aperture. But differences are observed at the lengthened images of small depressions and protrusions formed by atomic steps, which give a symmetrical contrast profile in the REM image, while an asymmetric black-white contrast is observed in the SREM micrograph. Furthermore the irregular structures which may be seen in the middle of Fig. 2 are not visible in the REM image, although it was taken after the SREM record.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


Sign in / Sign up

Export Citation Format

Share Document