Nogo Receptor crystal structures with a native disulfide pattern suggest a novel mode of self-interaction

2017 ◽  
Vol 73 (11) ◽  
pp. 860-876 ◽  
Author(s):  
Matti F. Pronker ◽  
Roderick P. Tas ◽  
Hedwich C. Vlieg ◽  
Bert J. C. Janssen

The Nogo Receptor (NgR) is a glycophosphatidylinositol-anchored cell-surface protein and is a receptor for three myelin-associated inhibitors of regeneration: myelin-associated glycoprotein, Nogo66 and oligodendrocyte myelin glycoprotein. In combination with different co-receptors, NgR mediates signalling that reduces neuronal plasticity. The available structures of the NgR ligand-binding leucine-rich repeat (LRR) domain have an artificial disulfide pattern owing to truncated C-terminal construct boundaries. NgR has previously been shown to self-associateviaits LRR domain, but the structural basis of this interaction remains elusive. Here, crystal structures of the NgR LRR with a longer C-terminal segment and a native disulfide pattern are presented. An additional C-terminal loop proximal to the C-terminal LRR cap is stabilized by two newly formed disulfide bonds, but is otherwise mostly unstructured in the absence of any stabilizing interactions. NgR crystallized in six unique crystal forms, three of which share a crystal-packing interface. NgR crystal-packing interfaces from all eight unique crystal forms are compared in order to explore how NgR could self-interact on the neuronal plasma membrane.

Author(s):  
Tsutomu Nakamura ◽  
Mayumi Niiyama ◽  
Wakana Hashimoto ◽  
Kurumi Ida ◽  
Manabu Abe ◽  
...  

NativeN,N′-diacetylchitobiose deacetylase fromPyrococcus furiosus(Pf-Dac) and its selenomethionine derivative (Se-Pf-Dac) were crystallized and analyzed in the presence and absence of cadmium ion. The four crystal structures fell into three different crystal-packing groups, with the cadmium-free Pf-Dac and Se-Pf-Dac belonging to the same space group, with homologous unit-cell parameters. The crystal structures in the presence of cadmium contained distorted octahedral cadmium complexes coordinated by three chlorides, two O atoms and an S or Se atom from the N-terminal methionine or selenomethionine, respectively. The N-terminal cadmium complex was involved in crystal contacts between symmetry-related molecules through hydrogen bonding to the N-termini. While all six N-termini of Se-Pf-Dac were involved in cadmium-complex formation, only two of the Pf-Dac N-termini participated in complex formation in the Cd-containing crystal, resulting in different crystal forms. These differences are discussed in light of the higher stability of the Cd—Se bond than the Cd—S bond. This work provides an example of the contribution of cadmium towards determining protein crystal quality and packing depending on the use of the native protein or the selenomethionine derivative.


2007 ◽  
Vol 63 (2) ◽  
pp. 328-337 ◽  
Author(s):  
Giuditta Bartalucci ◽  
Jennifer Coppin ◽  
Stuart Fisher ◽  
Gillian Hall ◽  
John R. Helliwell ◽  
...  

The crystal structures of the unbound carotenoids, synthetic astaxanthin (3S,3′S:3R,3′S:3R,3′R in a 1:2:1 ratio), canthaxanthin and (3R,3′S, meso)-zeaxanthin are compared with each other and the protein bound astaxanthin molecule in the carotenoprotein, β-crustacyanin. Three new crystal forms of astaxanthin have been obtained, using different crystallization conditions, comprising a chloroform solvate, a pyridine solvate and an unsolvated form. In each structure, the astaxanthin molecules, which are similar to one another, are centrosymmetric and adopt the 6-s-cis conformation; the end rings are bent out of the plane of the polyene chain by angles of −42.6 (5), −48.9 (5) and −50.4 (3)°, respectively, and are disordered, showing the presence of both R and S configurations (in a 1:1 ratio). In the crystal packing of the chloroform and pyridine solvates, the astaxanthin molecules show pair-wise end-to-end intermolecular hydrogen bonding of the adjacent 3-hydroxyl and 4-keto oxygens, whereas in the unsolvated crystal form, the hydrogen-bonding interaction is intermolecular. In addition, there are intermolecular C—H hydrogen bonds in all three structures. The canthaxanthin structure, measured at 100 and 293 K, also adopts the 6-s-cis conformation, but with disorder of one end ring only. The rotation of the end rings out of the plane of the polyene chains (ca −50 ° for each structure) is similar to that of astaxanthin. A number of possible C—H hydrogen bonds to the keto O atoms are also observed. (3R,3′S, meso)-zeaxanthin is centrosymmetric with a C5—C6—C7—C8 torsion angle of −74.9 (3)°; the molecules show pair-wise hydrogen bonding between the hydroxyl O atoms. In addition, for all the crystal structures the polyene chains were arranged one above the other, with intermolecular distances of 3.61–3.79 Å, indicating the presence of π-stacking interactions. Overall, these six crystal structures provide an ensemble of experimentally derived results that allow several key parameters, thought to influence colour tuning of the bathochromic shift of astaxanthin in crustacyanin, to be varied. The fact that the colour of each of the six crystals remains red, rather than turning blue, is therefore especially significant.


Author(s):  
Alkistis N. Mitropoulou ◽  
Tom Ceska ◽  
James T. Heads ◽  
Andrew J. Beavil ◽  
Alistair J. Henry ◽  
...  

Immunoglobulin E (IgE) plays a central role in the allergic response, in which cross-linking of allergen by Fc∊RI-bound IgE triggers mast cell and basophil degranulation and the release of inflammatory mediators. The high-affinity interaction between IgE and Fc∊RI is a long-standing target for therapeutic intervention in allergic disease. Omalizumab is a clinically approved anti-IgE monoclonal antibody that binds to free IgE, also with high affinity, preventing its interaction with Fc∊RI. All attempts to crystallize the pre-formed complex between the omalizumab Fab and the Fc region of IgE (IgE-Fc), to understand the structural basis for its mechanism of action, surprisingly failed. Instead, the Fab alone selectively crystallized in different crystal forms, but their structures revealed intermolecular Fab/Fab interactions that were clearly strong enough to disrupt the Fab/IgE-Fc complexes. Some of these interactions were common to other Fab crystal structures. Mutations were therefore designed to disrupt two recurring packing interactions observed in the omalizumab Fab crystal structures without interfering with the ability of the omalizumab Fab to recognize IgE-Fc; this led to the successful crystallization and subsequent structure determination of the Fab/IgE-Fc complex. The mutagenesis strategy adopted to achieve this result is applicable to other intractable Fab/antigen complexes or systems in which Fabs are used as crystallization chaperones.


2002 ◽  
Vol 362 (3) ◽  
pp. 539-544 ◽  
Author(s):  
Koji TOMOO ◽  
Xu SHEN ◽  
Koumei OKABE ◽  
Yoshiaki NOZOE ◽  
Shoichi FUKUHARA ◽  
...  

The crystal structures of the full-length human eukaryotic initiation factor (eIF) 4E complexed with two mRNA cap analogues [7-methylguanosine 5′-triphosphate (m7GTP) and P1-7-methylguanosine-P3-adenosine-5′,5′-triphosphate (m7GpppA)] were determined at 2.0Å resolution (where 1Å = 0.1nm). The flexibility of the C-terminal loop region of eIF4E complexed with m7GTP was significantly reduced when complexed with m7GpppA, suggesting the importance of the second nucleotide in the mRNA cap structure for the biological function of eIF4E, especially the fixation and orientation of the C-terminal loop region, including the eIF4E phosphorylation residue. The present results provide the structural basis for the biological function of both N- and C-terminal mobile regions of eIF4E in translation initiation, especially the regulatory function through the switch-on/off of eIF4E-binding protein—eIF4E phosphorylation.


Author(s):  
A. Engel ◽  
D.L. Dorset ◽  
A. Massalski ◽  
J.P. Rosenbusch

Porins represent a group of channel forming proteins that facilitate diffusion of small solutes across the outer membrane of Gram-negative bacteria, while excluding large molecules (>650 Da). Planar membranes reconstituted from purified matrix porin (OmpF protein) trimers and phospholipids have allowed quantitative functional studies of the voltage-dependent channels and revealed concerted activation of triplets. Under the same reconstitution conditions but using high protein concentrations porin aggregated to 2D lattices suitable for electron microscopy and image processing. Depending on the lipid-to- protein ratio three different crystal packing arrangements were observed: a large (a = 93 Å) and a small (a = 79 Å) hexagonal and a rectangular (a = 79 Å b = 139 Å) form with p3 symmetry for the hexagonal arrays. In all crystal forms distinct stain filled triplet indentations could be seen and were found to be morphologically identical within a resolution of (22 Å). It is tempting to correlate stain triplets with triple channels, but the proof of this hypothesis requires an analysis of the structure in 3 dimensions.


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


2009 ◽  
Vol 390 (2) ◽  
pp. 196-207 ◽  
Author(s):  
Elena Seiradake ◽  
Weimin Mao ◽  
Vincent Hernandez ◽  
Stephen J. Baker ◽  
Jacob J. Plattner ◽  
...  

2016 ◽  
Vol 113 (26) ◽  
pp. 7160-7165 ◽  
Author(s):  
Oliver J. Harrison ◽  
Julia Brasch ◽  
Gorka Lasso ◽  
Phinikoula S. Katsamba ◽  
Goran Ahlsen ◽  
...  

Desmosomes are intercellular adhesive junctions that impart strength to vertebrate tissues. Their dense, ordered intercellular attachments are formed by desmogleins (Dsgs) and desmocollins (Dscs), but the nature of trans-cellular interactions between these specialized cadherins is unclear. Here, using solution biophysics and coated-bead aggregation experiments, we demonstrate family-wise heterophilic specificity: All Dsgs form adhesive dimers with all Dscs, with affinities characteristic of each Dsg:Dsc pair. Crystal structures of ectodomains from Dsg2 and Dsg3 and from Dsc1 and Dsc2 show binding through a strand-swap mechanism similar to that of homophilic classical cadherins. However, conserved charged amino acids inhibit Dsg:Dsg and Dsc:Dsc interactions by same-charge repulsion and promote heterophilic Dsg:Dsc interactions through opposite-charge attraction. These findings show that Dsg:Dsc heterodimers represent the fundamental adhesive unit of desmosomes and provide a structural framework for understanding desmosome assembly.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Suresh Banjara ◽  
Sofia Caria ◽  
Linda K. Dixon ◽  
Mark G. Hinds ◽  
Marc Kvansakul

ABSTRACT Programmed cell death is a tightly controlled process critical for the removal of damaged or infected cells. Pro- and antiapoptotic proteins of the Bcl-2 family are pivotal mediators of this process. African swine fever virus (ASFV) is a large DNA virus, the only member of the Asfarviridae family, and harbors A179L, a putative Bcl-2 like protein. A179L has been shown to bind to several proapoptotic Bcl-2 proteins; however, the hierarchy of binding and the structural basis for apoptosis inhibition are currently not understood. We systematically evaluated the ability of A179L to bind proapoptotic Bcl-2 family members and show that A179L is the first antiapoptotic Bcl-2 protein to bind to all major death-inducing mammalian Bcl-2 proteins. We then defined the structural basis for apoptosis inhibition of A179L by determining the crystal structures of A179L bound to both Bid and Bax BH3 motifs. Our findings provide a mechanistic understanding for the potent antiapoptotic activity of A179L by identifying it as the first panprodeath Bcl-2 binder and serve as a platform for more-detailed investigations into the role of A179L during ASFV infection. IMPORTANCE Numerous viruses have acquired strategies to subvert apoptosis by encoding proteins capable of sequestering proapoptotic host proteins. African swine fever virus (ASFV), a large DNA virus and the only member of the Asfarviridae family, encodes the protein A179L, which functions to prevent apoptosis. We show that A179L is unusual among antiapoptotic Bcl-2 proteins in being able to physically bind to all core death-inducing mammalian Bcl-2 proteins. Currently, little is known regarding the molecular interactions between A179L and the proapoptotic Bcl-2 members. Using the crystal structures of A179L bound to two of the identified proapoptotic Bcl-2 proteins, Bid and Bax, we now provide a three-dimensional (3D) view of how A179L sequesters host proapoptotic proteins, which is crucial for subverting premature host cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document