Thermal fatigue cracking of surface mount conductive adhesive joints

2004 ◽  
Vol 16 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Zhimin Mo ◽  
Zonghe Lai ◽  
Shiming Li ◽  
Johan Liu
Author(s):  
Yue Zou ◽  
Brian Derreberry

Abstract Thermal cycling induced fatigue is widely recognized as one of the major contributors to the damage of nuclear plant piping systems, especially at locations where turbulent mixing of flows with different temperature occurs. Thermal fatigue caused by swirl penetration interaction with normally stagnant water layers has been identified as a mechanism that can lead to cracking in dead-ended branch lines attached to pressurized water reactor (PWR) primary coolant system. EPRI has developed screening methods, derived from extensive testing and analysis, to determine which lines are potentially affected as well as evaluation methods to perform evaluations of this thermal fatigue mechanism for the U.S. PWR plants. However, recent industry operating experience (OE) indicate that the model used to predict thermal fatigue due to swirl penetration is not fully understood. In addition, cumulative effects from other thermal transients, such as outflow activities, may also contribute to the failure of the RCS branch lines. In this paper, we report direct OE from one of our PWR units where thermal fatigue cracking is observed at the RCS loop drain line close to the welded region of the elbow. A conservative analytical approach that takes into account the influence of thermal stratification, in accordance with ASME Class 1 piping stress method, is also proposed to evaluate the severity of fatigue damage to the RCS drain line, as a result of transients from outflow activities. Finally, recommendations are made for future operation and inspection based on results of the evaluation.


2021 ◽  
Author(s):  
Yuxiang Zhang ◽  
Ryan J. Buntain ◽  
Jacob D. Edwards ◽  
Boian Alexandrov ◽  
Jorge Penso

2019 ◽  
Vol 105 ◽  
pp. 766-780 ◽  
Author(s):  
Elham kamouri Yousefabad ◽  
Saeed Asadi ◽  
Payam Savadkouhi ◽  
Omid Sedaghat ◽  
Ali Bakhshi

Sign in / Sign up

Export Citation Format

Share Document