Active disturbance rejection control strategy for airborne radar stabilization platform based on cascade extended state observer

2020 ◽  
Vol 40 (4) ◽  
pp. 613-624
Author(s):  
Dong Mei ◽  
Zhu-Qing Yu

Purpose This paper aims to improve the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous disturbance under complex air conditions to ensure the clarity and stability of airborne radar imaging. Design/methodology/approach This paper proposes a new active disturbance rejection control (ADRC) strategy based on the cascade extended state observer (ESO) for airborne radar stabilization platform, which adopts two first-order ESOs to estimate the angular velocity value and the angular position value of the stabilized platform. Then makes the error signal which subtracts the estimated value of ESO from the output signal of the tracking-differentiator as the input signal of the nonlinear state error feedback (NLSEF), and according to the output signal of the NLSEF and the value which dynamically compensated the total disturbances estimated by the two ESO to produce the final control signal. Findings The simulation results show that, compared with the classical ADRC, the ADRC based on the cascade ESO not only estimates the unknown disturbance more accurately but also improves the delay of disturbance observation effectively due to the increase of the order of the observer. In addition, compared with the classical PID control and the classical ADRC, it has made great progress in response performance and anti-interference ability, especially in the complex air conditions. Originality/value The originality of the paper is the adoption of a new ADRC control strategy based on the cascade ESO to ameliorate the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous interference under complex air conditions.

2020 ◽  
Vol 17 (4) ◽  
pp. 172988142093947
Author(s):  
Xing Li ◽  
Bingyou Liu ◽  
Lichao Wang

This study considers the problems of manipulators with high coupling, parameter uncertainties, and external disturbances. A six-axis serial manipulator control system based on active disturbance rejection control strategy is proposed without the requirement of the exact dynamic model. First, the operating circuit of the manipulator joint motor is analyzed, and the mathematical model of the direct-current torque motor is established. Second, the components of active disturbance rejection control are designed, and a new nonlinear function is selected to construct the extended state observer and nonlinear state error feedback control law. Then, Kalman filter is introduced into an extended state observer to estimate the disturbance efficiently. Finally, the proportion–integration–differentiation control, traditional active disturbance rejection control, and improved active disturbance rejection control are simulated and compared under the same input signal. The results show that the proposed control strategy has good dynamic performance and uncertain disturbance robustness, which proves the effectiveness of the proposed method.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 357 ◽  
Author(s):  
Chunlin Song ◽  
Changzhu Wei ◽  
Feng Yang ◽  
Naigang Cui

This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dong Mei ◽  
Zhu-Qing Yu

Purpose This paper aims to study a disturbance rejection controller to improve the anti-interference capability and the position tracking performance of airborne radar stabilized platform that ensures the stability and clarity of synthetic aperture radar imaging. Design/methodology/approach This study proposes a disturbance rejection control scheme for an airborne radar stabilized platform based on the active disturbance rejection control (ADRC) inverse estimation algorithm. Exploiting the extended state observer (ESO) characteristic, an inversely ESO is developed to inverse estimate the unmodeled state and extended state of the platform system known as total disturbances, which greatly improves the estimation performance of the disturbance. Then, based on the inverse ESO result, feedback the difference between the output of the tracking differentiator and the inverse ESO result to the nonlinear state error feedback controller (NLSEF) to eliminate the effects of total disturbance and ensure the stability of the airborne radar stabilized platform. Findings Simulation experiments are adopted to compare the performance of the ADRC inverse estimation algorithm with that of the proportional integral derivative controller which is one of the mostly applied control schemes in platform systems. In addition, classical ADRC is compared as well. The results have shown that the ADRC inverse estimation algorithm has a better disturbance rejection performance when disturbance acts in airborne radar stabilized platform, especially disturbed by continuous airflow under some harsh air conditions. Originality/value The originality of this paper is exploiting the ESO characteristic to develop an inverse ESO, which greatly improves the estimation performance of the disturbance. And the ADRC inverse estimation algorithm is applied to ameliorate the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous interference under complex air conditions.


Sign in / Sign up

Export Citation Format

Share Document