Effectiveness of Si contents in the steel composition on the corrosion performance of galvanized steel

2017 ◽  
Vol 64 (5) ◽  
pp. 479-485 ◽  
Author(s):  
Zeinab Abdel Hamid ◽  
Sayed Abd El Rehim ◽  
Moustafa Ibrahim

Purpose The purpose of this work was to investigate the effect of Si content of steel substrate on the performance of the hot-dip galvanized layer. Moreover, the structure of the galvanized layers and the corrosion performance of the galvanized steel in 3.5 per cent NaCl solution have been studied. Design/methodology/approach The galvanized layer has been formed by the hot-dip technique, and the influence of silicon content in the steel composition on the corrosion performance of the galvanized steel was estimated. The surface morphologies and chemical compositions of the coated layers were assessed using scanning electron microscopy and energy-dispersive X-ray analysis, respectively. Potentiodynamic polarization Tafel lines and electrochemical impedance spectroscopy (EIS) tests were used to evaluate the corrosion resistance of the galvanized steel in 3.5 per cent NaCl solution. Findings The results proved that adhere, compact and continuous coatings were formed with steel containing 0.56 Wt.% Si, while cracks and overly thick coatings were obtained with steel containing 1.46 Wt.% Si. Tafel plots illustrated that the corrosion rate of galvanized steel containing 0.08 and 0.56 Wt.% Si was lower than that of the galvanized steel containing 1.46 Wt.% Si. Also, the results of the EIS reveal that the impedance of the galvanized steel containing 0.08 and 0.56 Wt.% Si was the highest and the lowest, respectively, with the steel containing 1.46 Wt.% Si. Social implications Generally, in industry steels containing high amounts of silicon (0.15-0.25 Wt.%) can be galvanized satisfactory either by controlling the temperature (440°C) or adding Ni to the galvanized bath. The low temperature reduces the coating thickness; nickel amount must be controlled to prevent the formation of higher amounts of dross. This study proved that high Si steel of up to 0.56 Wt.% can be galvanized at 460°C without adding Ni to the galvanized bath and form adhere, compact, free cracks and have good corrosion resistance. Consequently, a social benefit can be associated with galvanizing high Si steel, leading to an increase in the cost of the process. Originality/value The results presented in this work are an insight into understanding the hot-dip galvanizing of high Si steel. The corrosion resistance of galvanized steel containing 0.56 Wt.% Si alloys has been considered as a promising behavior. In this work, a consistent assessment of the results was achieved on the laboratory scale.

2006 ◽  
Vol 530-531 ◽  
pp. 111-116
Author(s):  
M.C.E. Bandeira ◽  
F.D. Prochnow ◽  
Isolda Costa ◽  
César V. Franco

Nd-Fe-B magnets present outstanding magnetic properties. However, due to their low corrosion resistance, their applications are limited to non-corrosive environments. Nowadays, significant efforts are underway to increase the corrosion resistance of these materials, through the use of coatings. Herein are presented the results of a study on the corrosion resistance of Nd-Fe-B magnets coated with polypyrrole (PPY). The electrochemical behavior of coated and uncoated magnets has been studied by Electrochemical Impedance spectroscopy (EIS) in synthetic saliva. The results were compared to previous investigations, which were carried out under similar conditions, in Na2SO4 and NaCl solutions. In sulphate solution, the corrosion resistance of the PPY-coated magnet was 3 times larger (1600 .cm2) than that of uncoated magnet (500 .cm2). In NaCl solution, however, the corrosion resistance of coated and uncoated magnets were very similar (250 .cm2). In synthetic saliva, both the uncoated and coated magnets presented good corrosion performance (1940 .cm2). Such behavior can be attributed to the phosphate ions in saliva, which play a role as corrosion inhibitor, producing phosphating, at least partially, of the magnet surface. The PPY-coated magnets presented a strong diffusional control from moderate to low frequencies, caused by the polypyrrole film. The thicker PPY film increased the corrosion resistance of the magnet in synthetic saliva.


2016 ◽  
Vol 63 (5) ◽  
pp. 355-359
Author(s):  
Naghmeh Amirshaqaqi ◽  
Mehdi Salami-Kalajahi ◽  
Mohammad Mahdavian

Purpose The conventional method for evaluation of corrosion resistance of aluminum flakes is based on the volume of evolved hydrogen in acidic and basic environments. This study aims to introduce electrochemical impedance spectroscopy (EIS) as a method to evaluate corrosion resistance of aluminum flakes. Design/methodology/approach Aluminum flakes with different surface modifications were compressed to build a disk. Then, the disks were examined by EIS in NaCl solution. Also, the corrosion resistance of the flakes was evaluated by the conventional method. Findings The results revealed applicability of EIS for evaluation of corrosion resistance of aluminum flakes. Originality/value Application of EIS to evaluate corrosion resistance of aluminum flakes is novel. As it can provide fast, reliable and quantitative estimation of the corrosion resistance of the aluminum flakes in the 3.5 per cent NaCl solution. This medium is highly encountered for the aluminum flakes used in organic coatings, that is why test in NaCl solution is more convenient compared to the conventional methods using acid and alkaline conditions.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanghui Yi ◽  
Dajiang Zheng ◽  
Guang-Ling Song

Purpose The purpose of this paper is to address the concern of some stainless steel users. To understand the effect of surface white spots on corrosion performance of stainless steel. Design/methodology/approach White spots appeared on some component surfaces made of 316 L stainless steel in some industrial applications. To address the concern about the pitting performance in the spot areas, the pitting corrosion potential and corrosion resistance were measured in the spot and non-spot areas by means of potentiodynamic polarization and electrochemical impedance spectroscopy and the two different surface characteristics were analytically compared by using optical microscopy, laser confocal microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive spectroscopy and auger energy spectroscopy. The results indicated that the pitting performance of the 316 L stainless steel was not negatively influenced by the spots and the white spots simply resulted from the slightly different surface morphology in the spot areas. Findings The white spots are actually the slightly rougher surface areas with some carbon-containing species. They do not reduce the pitting resistance. Interestingly, the white spot areas even have slightly improved general corrosion resistance. Research limitations/implications Not all surface contamination or roughening can adversely affect the corrosion resistance of stainless steel. Practical implications Stainless steel components with such surface white spots are still qualified products in terms of corrosion performance. Originality/value The surface spot of stainless steel was systematically investigated for the first time for its effect on corrosion resistance and the conclusion was new to the common knowledge.


2021 ◽  
Vol 882 ◽  
pp. 35-49
Author(s):  
A.D. Vishwanatha ◽  
Bijayani Panda ◽  
J.N. Balaraju ◽  
Preeti Prakash Sahoo ◽  
P. Shreyas

Corrosion behavior of three carbon steels with increasing galvanized coating thickness of 5.6, 8.4 and 19.2 μm named as T1, T2 and T3, respectively, was studied by immersion test, potentiodynamic polarization and electrochemical impedance spectroscopy in freely aerated 3.5% NaCl solution. The major phase in the corrosion product of all the samples after immersion test was found to be zincite, as determined by X-Ray Diffraction and Fourier Transform Infrared Spectroscopy techniques. The corrosion product on sample T1was well adhered and was compact in most regions. Samples T2 and T3 showed porous and non-adherent growth of corrosion product. Corrosion rates were found to increase with increasing coating thickness. The impedance provided by the coating as well as the substrate was the highest for the sample with thinnest coating (T1). The early exposure of the underlying steel in sample T1 resulted in higher corrosion resistance, which was probably due to the combined effect of zinc corrosion products and Fe-Zn alloy layer. Higher amount of protective γ-FeOOH as well as compact corrosion product could have also improved the corrosion resistance of sample T1. Although the average uniform corrosion resistance was higher for T1, the localized pitting corrosion was also observed, probably due to the thin galvanized layer.


2018 ◽  
Vol 18 ◽  
pp. 19-26
Author(s):  
Nadjette Belhamra ◽  
Abd Raouf Boulebtina ◽  
Khadidja Belassadi ◽  
Abdelouahed Chala ◽  
Malika Diafi

The purpose of this paper was to investigate the effect of Al2O3 and TiO2 nanoparticles contents on structural proporties, microhardness and corrosion resistance of Zn-Ni alloy coationg. Zn-Ni, Zn-Ni-Al2O3 and Zn-Ni-TiO2 composite coatings were electrodeposited on steel substrate by direct current in sulphate bath.The structure of the coatings was studied by X-ray diffration and by scaning electron miroscopy. The results showed the appearance of Ni5Zn21 phases and that the incrorporation of Al2O3 and TiO2 in the Zn-Ni coating refined the crystal grain size.The corrosion performance of coating in the 0.6M NaCl as a corrisive solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy EIS methods. It was found that the incorporation of nanoparticules in Zn-Ni alloy coating have better corrosion resistance and the values of Rct and Zw increase, while the values of Cdl decrease with increasing of nanoparticules.


2014 ◽  
Vol 61 (5) ◽  
pp. 314-318 ◽  
Author(s):  
Chunmei Zhao ◽  
Yingwu Yao

Purpose – This paper aims to report a study of the influence of tungsten carbide (WC) nanoparticles on corrosion resistance properties of electroless nickel–phosphorus (Ni–P) coatings in NaCl solution. Design/methodology/approach – The morphology of Ni–P–WC nanocomposite coatings was observed by scanning electron microscopy (SEM). The anodic polarization curves, electrochemical impedance spectra (EIS) and weight loss measurements were used to study the corrosion resistance properties of Ni–P–WC nanocomposite coatings in NaCl solution. Findings – The WC nanoparticles content in the coatings increased with the increase of its concentration in the bath, and the WC nanoparticles are uniformly distributed in Ni–P alloy matrix. The results showed that the incorporation of WC nanoparticles elevated the corrosion resistance properties of Ni–P alloy matrix. Originality/value – This study shows that the corrosion resistance was improved by the addition of WC nanoparticles to the Ni–P alloy matrix.


2015 ◽  
Vol 62 (5) ◽  
pp. 334-340
Author(s):  
Rami Mohammad Suleiman

Purpose – The purpose of this paper was to prepare a hybrid organic/inorganic coating with interesting barrier properties against the corrosion of plain carbon steel sheets in 3.5 per cent NaCl solution. The search for replacing chromates in protective coatings has led to the development of hybrid sol-gel anticorrosive coatings. Appropriate functionalization can dramatically enhance the chemical durability and mechanical strength of these coatings. Design/methodology/approach – To prepare the targeted coating, 1,2-epoxybutane (EB) was mixed with 2 to 4 per cent aminoethylaminopropyl-methylsiloxane dimethylsiloxane (APDMS) copolymer and 1,6-diaminohexane. The above coating (EBAC) has been further mixed with three different corrosion inhibitors “Moly-white® 101-ED, Heucophos Zapp® and cerium ammonium nitrate”, yielding the coatings EBAC-M, EBAC-Z and EBAC-Ce, respectively. The corrosion characteristics of all coatings on the steel panels immersed in 3.5 per cent NaCl solution were obtained using different electrochemical methods such as electrochemical impedance spectroscopic and Tafel polarization measurements. Findings – The newly prepared coatings showed interesting protection properties for protecting the steel substrate against corrosion in chloride-containing media. Originality/value – The results provide a good approach for the modification of polydimethylsiloxane coatings using a simple organic modifier.


2014 ◽  
Vol 43 (6) ◽  
pp. 371-378 ◽  
Author(s):  
N.A. Mat Nor ◽  
L. Ismail ◽  
S.K.M. Jamari ◽  
K. Ramesh ◽  
B. Vengadaesvaran ◽  
...  

Purpose This paper aims to analyse the coating behaviour in corrosion environment as well as to evaluate the best percentage amount of copper oxide and copper needed for organic coating in order to prevent the corrosion degradation. Electrochemical impedance spectroscopy (EIS) studies have been conducted in order to evaluate the corrosion performance of polyester-epoxy-copper oxide and polyester-epoxy-copper coating systems. Design/methodology/approach The availability of this modem instruments is used to obtain impedance data as well as computer programs to interpret the results that made the technique popular. In addition, EIS is well suited to the study of polymer-coated metals. Findings The results showed that samples containing 25 weight per cent of copper oxide and copper (90P25CuO and 90P25Cu) obtained the excellent corrosion properties from the first day up to 30 days of NaCl immersion. The highest corrosion resistance values obtained by 90P25CuO and 90P25Cu on the 30th day were 7.107 × 108 O and 5.701 × 108 O, respectively, with lower double layer capacitance of 1.407 × 10−9 Farad and 3.935 × 10−9 Farad, respectively. Moreover, the water uptake gained by these two coating samples was the lowest at the end of immersion, which was 0.0084 for 90P25CuO and 0.1592 for 90P25Cu, showing that the sample has good corrosion performance. Originality/value This paper discussed on the highest corrosion resistance, double layer capacitance and the water uptake of the copper (Cu) and copper oxide (CuO) coating system obtained from the EIS measurements.


2019 ◽  
Vol 66 (6) ◽  
pp. 827-834
Author(s):  
Kong Weicheng ◽  
Shen Hui ◽  
Gao Jiaxu ◽  
Wu Jie ◽  
Lu Yuling

Purpose This study aims to investigate the electrochemical corrosion performance of high velocity oxygen fuel (HVOF) sprayed WC–12Co coating in 3.5 Wt.% NaCl solution, which provided a guiding significance on the corrosion resistance of H13 hot work mould steel. Design/methodology/approach A WC–12Co coating was fabricated on H13 hot work mould steel using a HVOF, and the electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution was measured using open circuit potential (OCP), potentiodynamic polarization curve (PPC) and electrochemical impedance spectroscopy (EIS) tests. Findings The OCP and PPC of WC–12Co coating positively shift than those of substrate, its corrosion tendency and corrosion rate decrease to enhance its corrosion resistance. The curvature radius of capacitance curve on the WC–12Co coating is larger than that on the substrate, and the impedance and polarization resistance of WC–12Co coating increase faster than those of substrate, which reduces the corrosion process. Originality/value The electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution is first measured using OCP, PPC and EIS tests, which improve the electrochemical corrosion resistance of H13 hot work mould steel.


2014 ◽  
Vol 61 (6) ◽  
pp. 423-430 ◽  
Author(s):  
Rami Mohammad Suleiman

Purpose – The purpose of this work was to prepare a hybrid organic/inorganic coating with interesting barrier properties against the corrosion of plain carbon steel sheets in 3.5 per cent NaCl solution. The search for replacing chromates in protective coatings has led to the development of hybrid sol-gel anticorrosive coatings. Appropriate functionalization can dramatically enhance the chemical durability and mechanical strength of these coatings. Design/methodology/approach – To prepare the targeted coating, 1,2-epoxybutane (EB) was mixed with 2-4 per cent aminoethylaminopropyl-methylsiloxane dimethylsiloxane copolymer and 1,6-diaminohexane. The above coating (EBAC) was further mixed with three different corrosion inhibitors “Moly-white® 101-ED, Hfucophos Zapp®” and Cerium Ammonium Nitrate, yielding the coatings (EBAC-M), (EBAC-Z) and (EABC-Ce), respectively. The corrosion characteristics of all coatings on carbon steel panels immersed in 3.5 per cent NaCl solution were obtained using different electrochemical methods such as electrochemical impedance spectroscopic and Tafel polarization measurements. Findings – The newly prepared coatings showed interesting properties for protecting the steel substrate against corrosion in chloride containing media. Originality/value – The results provide a good approach for the modification of polydimethylsiloxane coatings using a simple organic modifier.


Sign in / Sign up

Export Citation Format

Share Document