Corrosion Resistance of Nd-Fe-B Magnets Coated with Polypyrrole Films

2006 ◽  
Vol 530-531 ◽  
pp. 111-116
Author(s):  
M.C.E. Bandeira ◽  
F.D. Prochnow ◽  
Isolda Costa ◽  
César V. Franco

Nd-Fe-B magnets present outstanding magnetic properties. However, due to their low corrosion resistance, their applications are limited to non-corrosive environments. Nowadays, significant efforts are underway to increase the corrosion resistance of these materials, through the use of coatings. Herein are presented the results of a study on the corrosion resistance of Nd-Fe-B magnets coated with polypyrrole (PPY). The electrochemical behavior of coated and uncoated magnets has been studied by Electrochemical Impedance spectroscopy (EIS) in synthetic saliva. The results were compared to previous investigations, which were carried out under similar conditions, in Na2SO4 and NaCl solutions. In sulphate solution, the corrosion resistance of the PPY-coated magnet was 3 times larger (1600 .cm2) than that of uncoated magnet (500 .cm2). In NaCl solution, however, the corrosion resistance of coated and uncoated magnets were very similar (250 .cm2). In synthetic saliva, both the uncoated and coated magnets presented good corrosion performance (1940 .cm2). Such behavior can be attributed to the phosphate ions in saliva, which play a role as corrosion inhibitor, producing phosphating, at least partially, of the magnet surface. The PPY-coated magnets presented a strong diffusional control from moderate to low frequencies, caused by the polypyrrole film. The thicker PPY film increased the corrosion resistance of the magnet in synthetic saliva.

2017 ◽  
Vol 64 (5) ◽  
pp. 479-485 ◽  
Author(s):  
Zeinab Abdel Hamid ◽  
Sayed Abd El Rehim ◽  
Moustafa Ibrahim

Purpose The purpose of this work was to investigate the effect of Si content of steel substrate on the performance of the hot-dip galvanized layer. Moreover, the structure of the galvanized layers and the corrosion performance of the galvanized steel in 3.5 per cent NaCl solution have been studied. Design/methodology/approach The galvanized layer has been formed by the hot-dip technique, and the influence of silicon content in the steel composition on the corrosion performance of the galvanized steel was estimated. The surface morphologies and chemical compositions of the coated layers were assessed using scanning electron microscopy and energy-dispersive X-ray analysis, respectively. Potentiodynamic polarization Tafel lines and electrochemical impedance spectroscopy (EIS) tests were used to evaluate the corrosion resistance of the galvanized steel in 3.5 per cent NaCl solution. Findings The results proved that adhere, compact and continuous coatings were formed with steel containing 0.56 Wt.% Si, while cracks and overly thick coatings were obtained with steel containing 1.46 Wt.% Si. Tafel plots illustrated that the corrosion rate of galvanized steel containing 0.08 and 0.56 Wt.% Si was lower than that of the galvanized steel containing 1.46 Wt.% Si. Also, the results of the EIS reveal that the impedance of the galvanized steel containing 0.08 and 0.56 Wt.% Si was the highest and the lowest, respectively, with the steel containing 1.46 Wt.% Si. Social implications Generally, in industry steels containing high amounts of silicon (0.15-0.25 Wt.%) can be galvanized satisfactory either by controlling the temperature (440°C) or adding Ni to the galvanized bath. The low temperature reduces the coating thickness; nickel amount must be controlled to prevent the formation of higher amounts of dross. This study proved that high Si steel of up to 0.56 Wt.% can be galvanized at 460°C without adding Ni to the galvanized bath and form adhere, compact, free cracks and have good corrosion resistance. Consequently, a social benefit can be associated with galvanizing high Si steel, leading to an increase in the cost of the process. Originality/value The results presented in this work are an insight into understanding the hot-dip galvanizing of high Si steel. The corrosion resistance of galvanized steel containing 0.56 Wt.% Si alloys has been considered as a promising behavior. In this work, a consistent assessment of the results was achieved on the laboratory scale.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Kaijin Huang ◽  
Wei Li ◽  
Kai Pan ◽  
Xin Lin ◽  
Aihua Wang

In order to improve the seawater corrosion resistance of Inconel 718 superalloy, a La2Zr2O7/NiCoCrAlY thermal barrier coating corrosion resistant to 3.5 wt.% NaCl aqueous solution was prepared by laser cladding on Inconel 718 superalloy. X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and electrochemical techniques were used to study the microstructure and the corrosion performance of the coating in 3.5 wt.% NaCl solution. The results show that the thermal barrier coating is mainly composed of primary La2Zr2O7 phase and γ + laves/δ phase eutectic structure. The corrosion potential and corrosion current of the coating in 3.5 wt.% NaCl solution are higher and lower than that of the Inconel 718 substrate, respectively, indicating that the corrosion performance of the coating is better than that of the Inconel 718 substrate. The presence of La2Zr2O7 phase in the thermal barrier coating is the main reason for its corrosion resistance to 3.5 wt.% NaCl solution.


2013 ◽  
Vol 83 (5) ◽  
pp. 864-869 ◽  
Author(s):  
Elisa J. Kassab ◽  
José Ponciano Gomes

ABSTRACT Objective: To assess the influence of fluoride concentration on the corrosion behavior of nickel titanium (NiTi) superelastic wire and to compare the corrosion resistance of NiTi with that of beta titanium alloy in physiological solution with and without addition of fluoride. Materials and Methods: NiTi corrosion resistance was investigated through electrochemical impedance spectroscopy and anodic polarization in sodium chloride (NaCl 0.15 M) with and without addition of 0.02 M sodium fluoride (NaF), and the results were compared with those associated with beta titanium. The influence of fluoride concentration on NiTi corrosion behavior was assessed in NaCl (0.15 M) with and without 0.02, 0.04, 0.05, 0.07, and 0.12 M NaF solution. Galvanic corrosion between NiTi and beta titanium were investigated. All samples were characterized by scanning electron microscopy. Results: Polarization resistance decreased when NaF concentration was increased, and, depending on NaF concentration, NiTi can suffer localized or generalized corrosion. In NaCl solution with 0.02 M NaF, NiTi suffer localized corrosion, while beta titanium alloys remained passive. Current values near zero were observed by galvanic coupling of NiTi and beta titanium. Conclusions: There is a decrease in NiTi corrosion resistance in the presence of fluoride. The corrosion behavior of NiTi alloy depends on fluoride concentration. When 0.02 and 0.04 M of NaF were added to the NaCl solution, NiTi presented localized corrosion. When NaF concentration increased to 0.05, 0.07, and 0.12 M, the alloy presented general corrosion. NiTi corrosion resistance behavior is lower than that of beta titanium. Galvanic coupling of these alloys does not increase corrosion rates.


2011 ◽  
Vol 194-196 ◽  
pp. 1253-1256
Author(s):  
Ya Ni Zhang ◽  
Mao Sheng Zheng ◽  
Jie Wu Zhu

The corrosion behavior of CuCr, CuZr and CuCrZr alloys in NaCl solution is reported in this paper. The corrosion performance has been evaluated in NaCl solution atmosphere. The results show the corrosion resistance of pure copper decrease with the addition of the alloying elements initially. However, in the later exposure stages, the corrosion resistance of CuZr and CuCrZr alloy deteriorates significantly while the corrosion resistance of CuCr alloy is slightly better than that of pure copper. In addition, the results of the electrochemical experiments indicate that the different behavior for the element Cr and Zr in the base material and corrosion scales lead to the change of the corrosion resistance.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bekir Güney ◽  
Yusuf Dilay ◽  
Moses M. Solomon ◽  
Hüsnü Gerengi ◽  
Adem Özkan ◽  
...  

Abstract 30MnB5 boron alloyed steel surface is coated using different coating techniques, namely 60(Ni-15Cr-4.4Si-3.5Fe-3.2B 0.7C)-40(WC 12Co) metallic powder plasma spray, Fe-28Cr-5C-1Mn alloy wire arc spray, WC-10Co-4Cr (thick) powder high velocity oxy-fuel (HVOF), and WC-10Co-4Cr (fine) diamond jet HVOF. The microstructure of the crude steel sample consists of ferrite and pearlite matrices and iron carbide structures. The intermediate binders are well bonded to the substrate for all coated surfaces. The arc spray coated surface shows the formation of lamellae. The cross-section of HVOF and diamond jet HVOF coated surfaces indicates the formation of WC, W2C Cr, and W parent matrix carbide structures. The corrosion characteristic of the coated steel has been investigated in 3.5 wt.% NaCl solution using electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDAX) techniques. The results reveal that the steel corroded in the medium despite the coatings. However, the extent of corrosion varies. HVOF coated sample demonstrated the highest corrosion resistance while arc spray coated sample exhibited the least. EDAX mapping reveals that the elements in the coatings corroded in the order of their standard electrode potential (SEP). Higher corrosion resistance of HVOF coated sample is linked to the low SEP of tungsten.


MRS Advances ◽  
2020 ◽  
Vol 5 (40-41) ◽  
pp. 2129-2137 ◽  
Author(s):  
Wenwen Dou ◽  
Wen Li ◽  
Yuchen Cai ◽  
Mengyao Dong ◽  
Xiaojing Wang ◽  
...  

ABSTRACTTo improve the corrosion resistance and to increase the hardness of copper substrate in marine environment, the Cu-Ni/Ni-P composite coatings were prepared on the copper substrate using the galvanostatic electrolytic deposition method. The deposition current densities were explored to find the optimized deposition conditions for forming the composite coatings. Corrosion resistance properties were analyzed using the polarization curves and electrochemical impedance spectroscopy (EIS). Considering the corrosion resistance and hardness, the −20 mA/cm2 was selected to deposit Cu-Ni coatings on copper substrate and the −30 mA/cm2 was selected to deposit Ni-P coating on the Cu-Ni layer. The Cu-Ni/Ni-P composite coatings not only exhibited superior corrosion resistance compared to single Cu-Ni coating in 3.5 wt.% NaCl solution, but also showed much better mechanical properties than single Cu-Ni coating.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 598
Author(s):  
Wenwei Li ◽  
Jun-e Qu ◽  
Zhiyong Cao ◽  
Hairen Wang

The colored films were successfully prepared on the 304 stainless steel surfaces in coloring solutions with different NiSO4 contents. The purpose of this study was to investigate the effects of NiSO4 in the coloring solution on the coloring performance of 304 stainless steel and corrosion resistance of the obtained colored film in NaCl solution. The coloring rate was determined from coloring potential-time curve, and the protection properties of the color films in a 3.5% NaCl solution were characterized by potentiodynamic polarization scan, electrochemical impedance spectroscopy, and wear resistance test. The results showed that adding NiSO4 could accelerate the coloring process but brought about a negative impact on the surface’s corrosion resistance.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 394 ◽  
Author(s):  
Getinet Asrat Mengesha ◽  
Jinn P. Chu ◽  
Bih-Show Lou ◽  
Jyh-Wei Lee

The plasma electrolyte oxidation (PEO) process has been considered an environmentally friendly surface engineering method for improving the corrosion resistance of light weight metals. In this work, the corrosion resistance of commercially pure Al and PEO treated Al substrates were studied. The PEO layers were grown on commercially pure aluminum substrates using two different alkaline electrolytes with different addition concentrations of Si3N4 nanoparticles (0, 0.5 and 1.5 gL−1) and different duty cycles (25%, 50%, and 80%) at a fixed frequency. The corrosion properties of PEO coatings were investigated by the potentiodynamic polarization and electrochemical impedance spectroscopy test in 3.5 wt.% NaCl solutions. It showed that the weight gains, layer thickness and surface roughness of the PEO grown oxide layer increased with increasing concentrations of Si3N4 nanoparticles. The layer thickness, surface roughness, pore size, and porosity of the PEO oxide layer decreased with decreasing duty cycle. The layer thickness and weight gain of PEO coating followed a linear relationship. The PEO layer grown using the Na2B4O7∙10H2O contained electrolyte showed an excellent corrosion resistance and low surface roughness than other PEO coatings with Si3N4 nanoparticle additives. It is noticed that the corrosion performance of PEO coatings were not improved by the addition of Si3N4 nanoparticle in the electrolytic solutions, possibly due to its detrimental effect to the formation of a dense microstructure.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950080
Author(s):  
JIBO JIANG ◽  
HAOTIAN CHEN ◽  
LIYING ZHU ◽  
YAOXIN SUN ◽  
WEI QIAN ◽  
...  

Graphene oxide (GO) sheet and ultrasonic field (UF) were successfully employed to produce Ni–B/GO and UF–Ni–B/GO composite coatings on Q235 mild steel by electroless plating. The composite coatings’ structure and surface morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Results showed that GO was successfully co-deposited in the Ni–B alloy. Moreover, UF–Ni–B/GO composite coatings have smoother surface and thicker cross-section than others. The microhardness and corrosion resistance of the sample coatings were determined using Vickers hardness tests, Tafel electrochemical tests and electrochemical impedance measurements (EIS) in 3.5[Formula: see text]wt.% NaCl solution to receive the effect of GO and ultrasonic. The findings indicated that UF–Ni–B/GO exhibited optimum hardness (856[Formula: see text]HV) and enhanced corrosion resistance (6.38 [Formula: see text][Formula: see text] over the Ni–B and Ni–B/GO coatings. Due to these interesting properties of the coating, it could be used as a protective material in the automotive and aerospace industries for parts of machines that were manipulated in high temperature and corrosive environments.


2020 ◽  
Vol 10 (8) ◽  
pp. 2753 ◽  
Author(s):  
Diana-Petronela Burduhos-Nergis ◽  
Petrica Vizureanu ◽  
Andrei Victor Sandu ◽  
Costica Bejinariu

This study aims to evaluate the corrosion resistance of carbon steel, used for carabiners manufacturing, coated with three different types of phosphate layer. The phosphate layers have been obtained by phosphate conversion coating with three different types of phosphate solutions: zinc-based solution, zinc-iron-based phosphate solution, and manganese-based phosphate solution. Additionally, the test was performed on zinc phosphate samples impregnated with molybdenum bisulfate-based oil and zinc phosphate samples further coated with a layer of elastomer-based paint. Considering the areas where the carabiners are used (civil engineering, navigation, oil industry, rescue operations, etc.), the corrosive environments studied are rainwater, Black Sea water, and fire extinguishing solution. The structure of the deposited layers was studied by scanning electron microscopy, while the interface structure between the alloy and corrosive environment was analyzed by electrochemical impedance spectroscopy. According to this study, the corrosion resistance of zinc-based phosphate coated samples and zinc/iron-based phosphate coated samples is higher than that of the studied carbon steel samples, despite the corrosion environment. Also, the most aggressive corrosion environment was the fire extinguishing solution.


Sign in / Sign up

Export Citation Format

Share Document