Aircraft positioning using PPP method in GLONASS system

2018 ◽  
Vol 90 (9) ◽  
pp. 1413-1420 ◽  
Author(s):  
Kamil Krasuski ◽  
Janusz C´wiklak ◽  
Henryk Jafernik

Purpose The purpose of the study is focused on implementation of Global Navigation Satellite System (GLONASS) technique in civil aviation for recovery of aircraft position using Precise Point Positioning (PPP) method in kinematic mode. Design/methodology/approach The aircraft coordinates of Cessna 172 plane in XYZ geocentric frame were obtained based on GLONASS code and phase observations for PPP method. The numerical computations were executed in post-processing mode in the RTKPOST module in RTKLIB program. The mathematical scheme of equation observation of PPP method was solved using Kalman filter in stochastic processing. Findings In paper, the average accuracy of aircraft position is about 0.308 m for X coordinate, 0.274 m for Y coordinate, 0.379 m for Z coordinate. In case of the mean radial spherical error (MRSE) parameter, the average value equals to 0.562 m. In paper, the accuracy of aircraft position in BLh geodesic frame were also showed and described. Research limitations/implications The PPP method can be applied for determination the coordinates of receiver, receiver clock bias, Zenith Wet Delay (ZWD) parameter and ambiguity term for each satellite. Practical implications The PPP method is a new technique for aircraft positioning in air navigation. The PPP method can be also used in receiver autonomous integrity monitoring (RAIM) module in aircraft-based augmentation system (ABAS) system in air transport. The typical accuracy for recovery the aircraft position is about cm ÷ dm level using the PPP method. Social implications The paper is destined for people who work in area of geodesy, navigation, aviation and air transport. Originality/value The work presents the original research results of implementation the GLONASS satellite technique for recovery the aircraft position in civil aviation. Currently, the presented research PPP method is used in precise positioning of aircraft in air navigation based on global positioning system and GLONASS solutions.

2018 ◽  
Vol 90 (8) ◽  
pp. 1213-1220 ◽  
Author(s):  
Kamil Krasuski

PurposeThe purpose of this paper is based on implementation of Global Navigation Satellite System (GNSS) technique in civil aviation for recovery of aircraft position using Single Point Positioning (SPP) method in kinematic mode.Design/methodology/approachThe aircraft coordinates in ellipsoidal frame were obtained based on Global Positioning System (GPS) code observations for SPP method. The numerical computations were executed in post-processing mode in the Aircraft Positioning Software (APS) package. The mathematical scheme of equation observation of SPP method was solved using least square estimation in stochastic processing. In the experiment, airborne test using Cessna 172 aircraft on September 07, 2011 in the civil aerodrome in Mielec was realized. The aircraft position was recovery using observations data from Topcon HiperPro dual-frequency receiver with interval of 1 second.FindingsIn this paper, the average value of standard deviation of aircraft position is about 0.8 m for Latitude, 0.7 m for Longitude and 1.5 m for ellipsoidal height, respectively. In case of the Mean Radial Spherical Error (MRSE) parameter, the average value equals to 1.8 m. The standard deviation of receiver clock bias was presented in this paper and the average value amounts to 34.4 ns. In this paper, the safety protection levels of Horizontal Protection Level (HPL) and Vertical Protection Level (VPL) were also showed and described.Research limitations/implicationsIn this paper, the analysis of aircraft positioning is focused on application the least square estimation in SPP method. The Kalman filtering operation can be also applied in SPP method for designation the position of the aircraft.Practical implicationsThe SPP method can be applied in civil aviation for designation the position of the aircraft in Non-Precision Approach (NPA) GNSS procedure at the landing phase. The typical accuracy of aircraft position is better than 220 m for lateral navigation in NPA GNSS procedure. The limit of accuracy of aircraft position in vertical plane in NPA GNSS procedure is not available.Social implicationsThis paper is destined for people who works in the area of aviation and air transport.Originality/valueThe work presents that SPP method as a universal technique for recovery of aircraft position in civil aviation, and this method can be also used in positioning of aircraft based on Global Navigation Satellite System (GLONASS) code observations.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4847
Author(s):  
Weichuan Pan ◽  
Xingqun Zhan ◽  
Xin Zhang ◽  
Shizhuang Wang

The advanced receiver autonomous integrity monitoring (advanced RAIM, ARAIM) is the next generation of RAIM which is widely used in civil aviation. However, the current ARAIM needs to evaluate hundreds of subsets, which results in huge computational loads. In this paper, a method using the subset excluding entire constellation to evaluate the single satellite fault subsets and the simultaneous multiple satellites fault subsets is presented. The proposed ARAIM algorithm is based on the tight integration of the global navigation satellite system (GNSS) and inertial navigation system (INS). The number of subsets that the proposed GNSS/INS ARAIM needs to consider is about 2% of that of the current ARAIM, which reduces the computational load dramatically. The detailed fault detection (FD) process and fault exclusion (FE) process of the proposed GNSS/INS ARAIM are provided. Meanwhile, the method to obtain the FD-only integrity bound and the after-exclusion integrity bound is also presented in this paper. The simulation results show that the proposed GNSS/INS ARAIM is able to find the failing satellite accurately and its integrity performance is able to meet the integrity requirements of CAT-I precision approach.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 812
Author(s):  
Sotiris Lycourghiotis

The mean sea surface topography of the Ionian and Adriatic Seas has been determined. This was based on six-months of Global Navigation Satellite System (GNSS) measurements which were performed on the Ionian Queen (a ship). The measurements were analyzed following a double-path methodology based on differential GNSS (D-GNSS) and precise point positioning (PPP) analysis. Numerical filtering techniques, multi-parametric accuracy analysis and a new technique for removing the meteorological tide factors were also used. Results were compared with the EGM96 geoid model. The calculated differences ranged between 0 and 48 cm. The error of the results was estimated to fall within 3.31 cm. The 3D image of the marine topography in the region shows a nearly constant slope of 4 cm/km in the N–S direction. Thus, the effectiveness of the approach “repeated GNSS measurements on the same route of a ship” developed in the context of “GNSS methods on floating means” has been demonstrated. The application of this approach using systematic multi-track recordings on conventional liner ships is very promising, as it may open possibilities for widespread use of the methodology across the world.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3800 ◽  
Author(s):  
Daehee Kim ◽  
Jeongho Cho

The reliability of a navigation system is crucial for navigation purposes, especially in areas where stringent performance is required, such as civil aviation or intelligent transportation systems (ITSs). Therefore, integrity monitoring is an inseparable part of safety-critical navigation applications. The receiver autonomous integrity monitor (RAIM) has been used with the global navigation satellite system (GNSS) to provide integrity monitoring within avionics itself, such as in civil aviation for lateral navigation (LNAV) or the non-precision approach (NPA). However, standard RAIM may not meet the stricter aviation availability and integrity requirements for certain operations, e.g., precision approach flight phases, and also is not sufficient for on-ground vehicle integrity monitoring of several specific ITS applications. One possible way to more clearly distinguish anomalies in observed GNSS signals is to take advantage of time-delayed neural networks (TDNNs) to estimate useful information about the faulty characteristics, rather than simply using RAIM alone. Based on the performance evaluation, it was determined that this method can reliably detect flaws in navigation satellites significantly faster than RAIM alone, and it was confirmed that TDNN-based integrity monitoring using RAIM is an encouraging alternative to improve the integrity assurance level of RAIM in terms of GNSS anomaly detection.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401877619 ◽  
Author(s):  
Xueen Zheng ◽  
Ye Liu ◽  
Guochao Fan ◽  
Jing Zhao ◽  
Chengdong Xu

The availability of advanced receiver autonomous integrity monitoring for vertical guidance down to altitudes of 200 ft (LPV-200) is discussed using real satellite orbit/ephemeris data collected at eight international global navigation satellite system service stations across China. Analyses were conducted for the availability of multi-constellation advanced receiver autonomous integrity monitoring and multi-fault advanced receiver autonomous integrity monitoring, and the sensitivity of availability in response to changes in error model parameters (i.e. user range accuracy, user range error, Bias-Nom and Bias-Max) was used to compute the vertical protection level. The results demonstrated that advanced receiver autonomous integrity monitoring availability based on multiple constellations met the requirements of LPV-200 despite multiple-fault detections that reduced the availability of the advanced receiver autonomous integrity monitoring algorithm; the advanced receiver autonomous integrity monitoring availability thresholds of the user range error and Bias-Nom used for accuracy were more relevant to geographic information than the user range accuracy and Bias-Max used for integrity at the eight international global navigation satellite system service stations. Finally, the possibility of using the advanced receiver autonomous integrity monitoring algorithm for a Category III navigation standard is discussed using two sets of predicted errors, revealing that the algorithm could be used in 79% of China.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1945 ◽  
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

The aim of this paper is to present the problem of the implementation of the EGNOS (European Geostationary Navigation Overlay Service) data for the processing of aircraft position determination. The main aim of the research is to develop a new computational strategy which might improve the performance of the EGNOS system in aviation, based on navigation solutions of an aircraft position, using several GNSS (Global Navigation Satellite System) onboard receivers. The results of an experimental test conducted by the Cessna 172 at EPDE (European Poland Deblin) (ICAO (International Civil Aviation Organization) code, N51°33.07’/E21°53.52’) aerodrome in Dęblin are presented and discussed in this paper. Two GNSS navigation receivers with the EGNOS positioning function for monitoring changes in the parameters of the aircraft position in real time during the landing phase were installed onboard a Cessna 172. Based on obtained research findings, it was discovered that the positioning accuracy was not higher than 2.1 m, and the integrity of positioning did not exceed 19 m. Moreover, the availability parameter was found to equal 1 (or 100%); also, no intervals in the continuity of the operation of the EGNOS system were recorded. In the paper, the results of the air test from Dęblin were compared with the parameters of positioning quality from the air test conducted in Chełm (ICAO code: EPCD, N51°04’57.8” E23°26’15”). In the air test in Chełm, the obtained parameters of EGNOS quality positioning were: better than 4.9 m for accuracy, less than 35.5 m for integrity, 100% for availability, and no breaks in continuity. Based on the results of the air tests in Dęblin and Chełm, it was concluded that the parameters of the EGNOS positioning quality in aviation for the SBAS (Satellite Based Augmentation System) APV (Approach to Vertical guidance) procedure were satisfied in accordance with the ICAO (International Civil Aviation Organization) requirements. The presented research method can be utilized in the SBAS APV landing procedure in Polish aviation. In this paper, the results of PDOP (Position Dilution of Precision) are presented and compared to the two air tests in Dęblin and Chełm. The maximum results of PDOP amounted to 1.4 in the air test in Dęblin, whereas they equaled 4.0 in the air test in Chełm. The paper also shows how the EGNOS system improved the aircraft position in relation to the only GPS solution. In this context, the EGNOS system improved the aircraft position from about 78% to 95% for each ellipsoidal coordinate axis.


2014 ◽  
Vol 21 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Wojciech Z. Kaleta

AbstractOn 14th and 15th March 2011 for the first time approach with vertical guidance (APV-I) was conducted on Polish territory in Katowice, Kraków and Mielec. This was the milestone for GNSS (Global Navigation Satellite System) and Area Navigation (RNAV) use as a new instrument approach chance for NPA (Non-Precision Approach) and PA (Precision Approach) in Poland. The paper presents the experiment study of EGNOS SIS (Signal in Space) due to APV (Approach with Vertical Guidance) procedures development possibilities in the south-eastern part of Poland. Researches were conducted from January 2014 till June 2014 in three Polish cities: Warszawa, Kraków and Rzeszów. EGNOS as SBAS (Satellite Based Augmentation System) in according with ICAO's Annex 10 has to meet restrictive requirements for three dimensional accuracy, system integrity, availability and continuity of SIS. Because of ECAC (European Civil Aviation Conference) states to EGNOS coverage in the eastern part of Europe, location of mention above stations, shows real usefulness for SIS tests and evaluation of the results [EUROCONTROL, 2008].


2020 ◽  
Vol 12 (14) ◽  
pp. 2322 ◽  
Author(s):  
Andreja Sušnik ◽  
Andrea Grahsl ◽  
Daniel Arnold ◽  
Arturo Villiger ◽  
Rolf Dach ◽  
...  

In the framework of the European Gravity Service for Improved Emergency Management (EGSIEM) project, consistent sets of state-of-the-art reprocessed Global Navigation Satellite System (GNSS) orbits and satellite clock corrections have been generated. The reprocessing campaign includes data starting in 1994 and follows the Center for Orbit Determination in Europe (CODE) processing strategy, in particular exploiting the extended version of the empirical CODE Orbit Model (ECOM). Satellite orbits are provided for Global Positioning System (GPS) satellites since 1994 and for Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) since 2002. In addition, a consistent set of GPS satellite clock corrections with 30 s sampling has been generated from 2000 and with 5 s sampling from 2003 onwards. For the first time in a reprocessing scheme, GLONASS satellite clock corrections with 30 s sampling from 2008 and 5 s from 2010 onwards were also generated. The benefit with respect to earlier reprocessing series is demonstrated in terms of polar motion coordinates. GNSS satellite clock corrections are validated in terms of completeness, Allan deviation, and precise point positioning (PPP) using terrestrial stations. In addition, the products herein were validated with Gravity Recovery and Climate Experiment (GRACE) precise orbit determination (POD) and Satellite Laser Ranging (SLR). The dataset is publicly available.


2007 ◽  
Vol 60 (2) ◽  
pp. 327-348 ◽  
Author(s):  
Umar Iqbal Bhatti ◽  
Washington Yotto Ochieng

GPS is the most widely used global navigation satellite system. By design, there is no provision for real time integrity information within the Standard Positioning Service (SPS). However, in safety critical sectors like aviation, stringent integrity performance requirements must be met. This can be achieved externally or at the receiver level through receiver autonomous integrity monitoring (RAIM). The latter is a cost effective method that relies on data consistency, and therefore requires redundant measurements. An external aid to provide this redundancy can be in the form of an Inertial Navigation System (INS). This should enable continued performance even during RAIM holes (when no redundant satellite measurements are available). However, due to the inclusion of an additional system and the coupling mechanism, integrity issues become more challenging. To develop an effective integrity monitoring capability, a good understanding of the potential failure modes of the integrated system is vital. In this paper potential failure modes of integrated GPS/INS systems are identified. This is followed by the specification of corresponding models that would be required to investigate the capability of existing integrity algorithms and to develop enhancements or new algorithms.


2014 ◽  
Vol 68 (2) ◽  
pp. 238-252 ◽  
Author(s):  
Ling Yang ◽  
Yong Li ◽  
Wei Jiang ◽  
Chris Rizos

To meet the accuracy, integrity, continuity and availability required for many navigation applications the Locata technology can provide an alternative to satellite-based navigation in difficult Global Navigation Satellite System (GNSS) signal environments, especially for applications in port areas and in constricted waterways. Unlike GNSS constellations, a LocataNet – a local constellation of LocataLites – can be designed specifically for different environments to avoid signal blockages, interference or poor geometry. By using Locata technology, the optimal performance within particular areas can always be guaranteed. This paper demonstrates the influence of LocataNet configuration on the reliability and integrity of the Locata positioning system. The performance of the Locata system is investigated using the Receiver Autonomous Integrity Monitoring (RAIM) concept. Fault Detection and Exclusion (FDE) algorithm performance is validated through the computation of the Dilution of Precision (DOP), the Horizontal Protection Level (HPL) and the correlation coefficient between two failure modes that can indicate the quality of fault identification. The experimental analysis shows that a good configuration of LocataLites will enhance the accuracy and reliability of the navigation system.


Sign in / Sign up

Export Citation Format

Share Document