scholarly journals Analysis of BDS/GPS Signals’ Characteristics and Navigation Accuracy for a Geostationary Satellite

2021 ◽  
Vol 13 (10) ◽  
pp. 1967
Author(s):  
Meng Wang ◽  
Tao Shan ◽  
Wanwei Zhang ◽  
Hao Huan

The utilization of Global Navigation Satellite System (GNSS) is becoming an attractive navigation approach for geostationary orbit (GEO) satellites. A high-sensitivity receiver compatible with Global Position System (GPS) developed by the United States and BeiDou Navigation Satellite System (BDS) developed by China has been used in a GEO satellite named TJS-5 to demonstrate feasibility of real-time navigation. According to inflight data, the GNSS signal characteristics including availability, position dilution of precision (PDOP), carrier-to-noise ratio (C/N0), observations quantity and accuracy are analyzed. The mean number of GPS and GPS + BDS satellites tracked are 7.4 and 11.7 and the mean PDOP of GPS and GPS + BDS are 10.24 and 3.91, respectively. The use of BDS significantly increases the number of available navigation satellites and improves the PDOP. The number of observations with respect to C/N0 is illustrated in detail. The standard deviation of the pseudorange noises are less than 4 m, and the corresponding carrier phase noises are mostly less than 8 mm. We present the navigation performance using only GPS observations and GPS + BDS observations combination at different weights through comparisons with the precision reference orbits. When GPS combined with BDS observations, the root mean square (RMS) of the single-epoch least square position accuracy can improve from 32.1 m to 16.5 m and the corresponding velocity accuracy can improve from 0.238 m/s to 0.165 m/s. The RMS of real-time orbit determination position accuracy is 5.55 m and the corresponding velocity accuracy is 0.697 mm/s when using GPS and BDS combinations. Especially, the position accuracy in x-axis direction reduced from 7.24 m to 4.09 m when combined GPS with BDS observations.


2021 ◽  
Vol 14 (2) ◽  
pp. 105
Author(s):  
Maelckson Bruno Barros Gomes ◽  
André Luis Silva Santos

<p class="04CorpodoTexto">Este artigo tem por objetivo aplicar geotecnologias para obtenção de informações planialtimétricas a fim de avaliar a viabilidade de implantação do campus Centro Histórico/Itaqui-Bacanga do IFMA. Considerando que para realização de levantamento por métodos tradicionais é recomendado que seja realizado o destocamento e a limpeza do terreno previamente, avaliou-se a realização do levantamento planialtimétrico a partir de um par de receptores <em>Global Navigation Satellite System</em> (GNSS) pelo método <em>Real Time Kinematic</em> (RTK) pós processado e também a partir da realização de levantamento fotogramétrico, utilizando aeronave remotamente pilotada (ARP), popularmente conhecida como drone. Esta análise permitiu demonstrar que o aerolevantamento com a ARP pode ser aplicado na concepção inicial de um projeto de engenharia, conforme classificação do Tribunal de Contas da União (TCU) para níveis de precisão, pois obteve-se uma diferença orçamentária de 19% entre os projetos elaborados a partir das duas geotecnologias.</p><div> </div>



2018 ◽  
Vol 71 (4) ◽  
pp. 769-787 ◽  
Author(s):  
Ahmed El-Mowafy

Real-time Precise Point Positioning (PPP) relies on the use of accurate satellite orbit and clock corrections. If these corrections contain large errors or faults, either from the system or by meaconing, they will adversely affect positioning. Therefore, such faults have to be detected and excluded. In traditional PPP, measurements that have faulty corrections are typically excluded as they are merged together. In this contribution, a new PPP model that encompasses the orbit and clock corrections as quasi-observations is presented such that they undergo the fault detection and exclusion process separate from the observations. This enables the use of measurements that have faulty corrections along with predicted values of these corrections in place of the excluded ones. Moreover, the proposed approach allows for inclusion of the complete stochastic information of the corrections. To facilitate modelling of the orbit and clock corrections as quasi-observations, International Global Navigation Satellite System Service (IGS) real-time corrections were characterised over a six-month period. The proposed method is validated and its benefits are demonstrated at two sites using three days of data.



2019 ◽  
Vol 63 (1) ◽  
pp. 73-93 ◽  
Author(s):  
Bofeng Li ◽  
Haibo Ge ◽  
Maorong Ge ◽  
Liangwei Nie ◽  
Yunzhong Shen ◽  
...  


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.



2020 ◽  
Vol 10 (6) ◽  
pp. 1952 ◽  
Author(s):  
Xugang Lian ◽  
Zoujun Li ◽  
Hongyan Yuan ◽  
Haifeng Hu ◽  
Yinfei Cai ◽  
...  

Surface movement and deformation induced by underground coal mining causes slopes to collapse. Global Navigation Satellite System (GNSS) real-time monitoring can provide early warnings and prevent disasters. A stability analysis of high-steep slopes was conducted in a long wall mine in China, and a GNSS real-time monitoring system was established. The moving velocity and displacement at the monitoring points were an integrated response to the influencing factors of mining, topography, and rainfall. Underground mining provided a continuous external driving force for slope movement, the steep terrain provided sufficient slip conditions in the slope direction, and rainfall had an acceleration effect on slope movement. The non-uniform deformation, displacement field, and time series images of the slope body revealed that ground failure was concentrated in the area of non-uniform deformation. The non-uniform deformation was concentrated ahead of the working face, the speed of deformation behind the working face was reduced, the instability of the slope body was increased, and the movement of the top of the slope was larger than at the foot. The high-steep slope stability in the mine was influenced by the starting deformation (low stability), iso-accelerated deformation (increased stability), deformation deceleration (reduced stability), and deformation remaining unchanged (improved stability).



Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4046 ◽  
Author(s):  
Fabian Ruwisch ◽  
Ankit Jain ◽  
Steffen Schön

We present analyses of Global Navigation Satellite System (GNSS) carrier phase observations in multiple kinematic scenarios for different receiver types. Multi-GNSS observations are recorded on high sensitivity and geodetic-grade receivers operating on a moving zero-baseline by conducting terrestrial urban and aerial flight experiments. The captured data is post-processed; carrier phase residuals are computed using the double difference (DD) concept. The estimated noise levels of carrier phases are analysed with respect to different parameters. We find DD noise levels for L1 carrier phase observations in the range of 1.4–2 mm (GPS, Global Positioning System), 2.8–4.6 mm (GLONASS, Global Navigation Satellite System), and 1.5–1.7 mm (Galileo) for geodetic receiver pairs. The noise level for high sensitivity receivers is at least higher by a factor of 2. For satellites elevating above 30 ∘ , the dominant noise process is white phase noise. For the flight experiment, the elevation dependency of the noise is well described by the exponential model, while for the terrestrial urban experiment, multipath and diffraction effects overlay; hence no elevation dependency is found. For both experiments, a carrier-to-noise density ratio (C/N 0 ) dependency for carrier phase DDs of GPS and Galileo is clearly visible with geodetic-grade receivers. In addition, C/N 0 dependency is also visible for carrier phase DDs of GLONASS with geodetic-grade receivers for the terrestrial urban experiment.



2020 ◽  
Vol 2 (1) ◽  
pp. 41
Author(s):  
Ashutosh Bhardwaj

Satellite-based navigation techniques have revolutionized modern-day surveying with unprecedented accuracies along with the traditional and terrestrial-based navigation techniques. However, the satellite-based techniques gain popularity due to their ease and availability. The position and attitude sensors mounted on satellites, aerial, and ground-based platforms as well as different types of equipment play a vital role in remote sensing providing navigation and data. The presented review in this paper describes the terrestrial (LORAN-C, Omega, Alpha, Chayka) and satellite-based systems with their major features and peculiar applications. The regional and global navigation satellite systems (GNSS) can provide the position of a static object or a moving object i.e., in Kinematic mode. The GNSS systems include the NAVigation Satellite Timing And Ranging Global Positioning System (NAVSTAR GPS), of the United States of America (USA); the Globalnaya navigatsionnaya sputnikovaya sistema (GLObal NAvigation Satellite System, GLONASS), of Russia; BEIDOU, of China; and GALILEO, of the European Union (EU). Among the initial satellite-based regional navigation systems included are the TRANSIT of the US and TSYKLON of what was then the USSR which became operational in the 1960s. Regional systems developed in the last decade include the Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation Satellite System (IRNSS). Currently, these global and regional satellite-based systems provide their services with accuracies of the order of 10–20 m using the trilateration method of surveying for civil use. The terrestrial and satellite-based augmented systems (SBAS) were further developed along with different surveying techniques to improve the accuracies up to centimeters or millimeter levels for precise applications.



2020 ◽  
Vol 70 (1) ◽  
pp. 394
Author(s):  
John Le Marshall ◽  
Robert Norman ◽  
David Howard ◽  
Susan Rennie ◽  
Michael Moore ◽  
...  

The use of high spatial and temporal resolution data assimilation and forecasting around Australia’s capital cities and rural land provided an opportunity to improve moisture analysis and forecasting. To support this endeavour, RMIT University and Geoscience Australia worked with the Bureau of Meteorology (BoM) to provide real-time GNSS (global navigation satellite system) zenith total delay (ZTD) data over the Australian region, from which a high-resolution total water vapour field for SE Australia could be determined. The ZTD data could play an important role in high-resolution data assimilation by providing mesoscale moisture data coverage from existing GNSS surface stations over significant areas of the Australian continent. The data were used by the BoM’s high-resolution ACCESS-C3 capital city numerical weather prediction (NWP) systems, the ACCESS-G3 Global system and had been used by the ACCESS-R2-Regional NWP model. A description of the data collection and analysis system is provided. An example of the application of these local GNSS data for a heavy rainfall event over SE Australia/Victoria is shown using the 1.5-km resolution ACCESS-C3 model, which was being prepared for operational use. The results from the test were assessed qualitatively, synoptically and also examined quantitatively using the Fractions Skills Score which showed the reasonableness of the forecasts and demonstrated the potential for improving rainfall forecasts over south-eastern Australia by the inclusion of ZTD data in constructing the moisture field. These data have been accepted for operational use in NWP.



2019 ◽  
Vol 92 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kamil Krasuski ◽  
Janusz Cwiklak ◽  
Marek Grzegorzewski

Purpose This paper aims to present the problem of the integration of the global positioning system (GPS)/global navigation satellite system (GLONASS) data for the processing of aircraft position determination. Design/methodology/approach The aircraft coordinates were obtained based on GPS and GLONASS code observations for the single point positioning (SPP) method. The numerical computations were executed in the aircraft positioning software (APS) package. The mathematical scheme of equation observation of the SPP method was solved using least square estimation in stochastic processing. In the research experiment, the raw global navigation satellite system data from the Topcon HiperPro onboard receiver were applied. Findings In the paper, the mean errors of an aircraft position from APS were under 3 m. In addition, the accuracy of aircraft positioning was better than 6 m. The integrity term for horizontal protection level and vertical protection level parameters in the flight test was below 16 m. Research limitations/implications The paper presents only the application of GPS/GLONASS observations in aviation, without satellite data from other navigation systems. Practical implications The presented research method can be used in an aircraft based augmentation system in Polish aviation. Social implications The paper is addressed to persons who work in aviation and air transport. Originality/value The paper presents the SPP method as a satellite technique for the recovery of an aircraft position in an aviation test.



Sign in / Sign up

Export Citation Format

Share Document