Fault tolerant control against actuator faults based on enhanced PID controller for a quadrotor

2017 ◽  
Vol 89 (3) ◽  
pp. 468-476 ◽  
Author(s):  
Ahmet Ermeydan ◽  
Emre Kiyak

Purpose The purpose of this paper is to present fault tolerant control of a quadrotor based on the enhanced proportional integral derivative (PID) structure in the presence of one or more actuator faults. Design/methodology/approach Mathematical model of the quadrotor is derived by parameter identification of the system for the simulation of the UAV dynamics and flight control in MATLAB/Simulink. An improved PID structure is used to provide the stability of the nonlinear quadcopter system both for attitude and path control of the system. The results of the healty system and the faulty system are given in simulations, together with motor dynamics. Findings In this study, actuator faults are considered to show that a robust controller design handles the loss of effectiveness in motors up to some extent. For the loss of control effectiveness of 20 per cent in first and third motors, psi state follows the reference with steady state error, and it does not go unstable. Motor 1 and Motor 3 respond to given motor fault quickly. When it comes to one actuator fault, steady state errors remain in some states, but the system does not become unstable. Originality/value In this paper, an enhanced PID controller is proposed to keep the quadrotor stable in case of actuator faults. Proposed method demonstrates the effectiveness of the control system against motor faults.

Author(s):  
Gao Ming-Zhou ◽  
Chen Xin-Yi ◽  
Han Rong ◽  
Yao Jian-Yong

To suppress airfoil flutter, a lot of control methods have been proposed, such as classical control methods and optimal control methods. However, these methods did not consider the influence of actuator faults and control delay. This paper proposes a new finite-time H∞ adaptive fault-tolerant flutter controller by radial basis function neural network technology and adaptive fault-tolerant control method, taking into account actuator faults, control delay, modeling uncertainties, and external disturbances. The theoretic section of this paper is about airfoil flutter dynamic modeling and adaptive fault-tolerant controller design. Lyapunov function and linear matrix inequality are employed to prove the stability of the proposed control method of this paper. The numeral simulation section further proves the effectiveness and robustness of the proposed control algorithm of this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhifang Wang ◽  
Jianguo Yu ◽  
Shangjing Lin ◽  
Junguo Dong ◽  
Zheng Yu

Purpose The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system to distribute to solve the problem of control and communication failure at the same time. Design/methodology/approach In the paper, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network-integrated system. Findings The results show that the integrated system has good robustness and fault tolerance performance indicators for flight control and wireless signal transmission when confronted with external disturbances, internal actuator failures and wireless network associated failures and the flight control curve of the quadrotor unmanned aerial vehicle (UAV) is generally smooth and stable, even if it encounters external disturbances and actuator failures, its fault tolerance performance is very good. Then in the range of 400–800 m wireless communication distance, the success rate of wireless signal loop transmission is stable at 80%–100% and the performance is at least relatively improved by 158.823%. Originality/value This paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, based on the robust fault-tolerant control algorithm, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system and through the Riccati equation and linear matrix inequation method, the designed distributed robust H∞ adaptive fault-tolerant controller further optimizes the fault suppression factor γ, so as to break through the limitation of only one Lyapunov matrix for different fault modes to distribute to solve the problem of control and communication failure at the same time.


2020 ◽  
Vol 42 (12) ◽  
pp. 2308-2323
Author(s):  
Salama Makni ◽  
Maha Bouattour ◽  
Ahmed El Hajjaji ◽  
Mohamed Chaabane

In this work, we investigate the problem of control for nonlinear systems represented by Takagi-Sugeno (T-S) fuzzy models affected by both sensor and actuator faults subject to an unknown bounded disturbances (UBD). For this, we design an adaptive observer to estimate state, sensor and actuator fault vectors simultaneously despite the presence of external disturbances. Based on this observer, we develop a fault tolerant control (FTC) law not only to stabilize closed loop system, but also to compensate the fault effects. For the observer-based controller design, we propose less conservative conditions formulated in terms of linear matrix inequalities (LMIs). Moreover, both observer and controller gains are calculated via solving a set of LMIs only in single step. Finally, comparative results and an application to single-link flexible joint robot are afforded to prove the efficiency of the proposed design.


2018 ◽  
Vol 90 (1) ◽  
pp. 210-218 ◽  
Author(s):  
Hidenobu Matsuki ◽  
Taishi Nishiyama ◽  
Yuya Omori ◽  
Shinji Suzuki ◽  
Kazuya Masui ◽  
...  

Purpose This paper aims to demonstrate the effectiveness of a fault-tolerant flight control method by using simple adaptive control (SAC) with PID controller. Design/methodology/approach Numerical simulations and flight tests are executed for pitch angle and roll angle control of research aircraft MuPAL-α under the following fault cases: sudden reduction in aileron effectiveness, sudden reduction in elevator effectiveness and loss of longitudinal static stability. Findings The simulations and flight tests reveal the effectiveness of the proposed SAC with PID controller as a fault-tolerant flight controller. Practical implications This research includes implications for the development of vehicles’ robustness. Originality/value This study proposes novel SAC-based flight controller and actually demonstrates the effectiveness by flight test.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Songyin Cao ◽  
Jianzhong Qiao

A robust fault tolerant control (FTC) approach is addressed for a class of nonlinear systems with time delay, actuator faults, and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC), fault accommodation, and a mixedH2/H∞controller is constructed to reconfigure the considered systems with disturbance rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the proposed approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao He ◽  
Yamei Ju ◽  
Yang Liu ◽  
Bangcheng Zhang

The fault tolerant control problem for a DC motor system is investigated in a cloud environment. Packet dropout phenomenon introduced by the limited-capacity communication channel is considered. Actuator faults are taken into consideration and fault diagnosis and fault tolerant control methods towards actuator faults are proposed to enhance the reliability of the whole cloud-based DC motor system. The fault diagnosis unit is then established with purpose of obtaining fault information. When the actuator fault is detected by comparing the residual signal with a predefined threshold, a residual matching approach is utilized to locate the fault. The fault can be further estimated by a least-squares filter. Based on the fault estimation, a fault tolerant controller is designed to guarantee the stability as well as the control performance of the DC motor system. Simulation result on a DC motor system shows the efficiency of the fault tolerant control method proposed in this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gulay Unal

Purpose Fault detection, isolation and reconfiguration of the flight control system is an important problem to obtain healthy flight. This paper aims to propose an integrated approach for aircraft fault-tolerant control. Design/methodology/approach The integrated structure includes a Kalman filter to obtain without noise, a full order observer for sensor fault detection, a GOS (generalized observer scheme) for sensor fault isolation and a fuzzy controller to reconfigure of the healthy sensor. This combination is simulated using the state space model of a lateral flight control system in case of disturbance and under sensor fault scenario. Findings Using a dedicated observer scheme, the detection and time of sensor fault are correct, but the sensor fault isolation is evaluated incorrectly while the faulty sensor is isolated correctly using GOS. The simulation results show that the suggested approach works affectively for sensor faults with disturbance. Originality/value This paper proposes an integrated approach for aircraft fault-tolerant control. Under this framework, three units are designed, one is Kalman filter for filtering and the other is GOS for sensor fault isolation and another is fuzzy logic for reconfiguration. An integrated approach is sensitive to faults that have disturbances. The simulation results show the proposed integrated approach can be used for any linear system.


2018 ◽  
Vol 41 (4) ◽  
pp. 1019-1031 ◽  
Author(s):  
Siti Fadilah Abd Latip ◽  
Abdul Rashid Husain ◽  
Zaharuddin Mohamed ◽  
Mohd Ariffanan Mohd Basri

Actuator faults may cause performance degradation of a system and may sometimes even lead to instability. This paper deals with the fault tolerant control problem of a single-link flexible manipulator under a loss of actuator effectiveness. The proposed control scheme uses an adaptive proportional–integral–derivative (APID) controller, which may automatically online tune the three control gains, kp, ki, and kd. The adaptation laws of the APID controller are derived in the sense of the Lyapunov function, so that the stability of the closed-loop system may be guaranteed. The main advantage of the proposed methodology is that no prior offline learning or manual retuning of the PID controller is required to accommodate the actuator fault. In addition, the proposed APID controller does not require any knowledge of the fault magnitude in advance. The effectiveness and feasibility of the proposed approach is tested for the hub angular position and tracking control of a single-link flexible manipulator under both faulty and fault-free conditions. The results demonstrate that the approach is valid, leading to an accurate fault reconstruction, a better transient and good tracking performance, and significantly improved upon previous approaches in terms of errors with respect to the corresponding traditional fixed-gain PID controller.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liqin Zhou ◽  
Changbin Wang ◽  
Lin Li ◽  
Chengxi Zhang ◽  
Dalei Song ◽  
...  

Purpose A novel fault-tolerant control (FTC) method is proposed to assure the stability of the remote-operated vehicle (ROV) by considering the thruster failure-induced model perturbations. The stability of the ROV with failures is guaranteed and optimized with the determined model perturbation set. The effectiveness of the double-boundary interval fault-tolerant control (DBIFTC) is verified through the experiments and proves that the stability is well maintained, which demonstrates a decent performance. Design/methodology/approach This paper studies a control problem for a multi-vector propulsion ROV by using the DBIFTC method in the presence of thruster failure and external disturbances. The ROV kinematics and dynamical models with multi-vector-arranged thruster failure are investigated and formulated for control system design. Findings In this paper, the authors address the FTC problem of ROV with multi-vector thrusters and propose a DBIFTC scheme. The advantage is that as the kinematic system model of ROV is preanalyzed and identified, the DBIFTC becomes more effective. The mathematical stability of the system under the proposed control scheme can be guaranteed. Research limitations/implications The ROV model used in this paper is based on the system identification of experimental data. Although this model has real experimental value and physical significance, the accuracy can be further improved. Practical implications Cable-controlled underwater ROVs are widely used in military missions and scientific research because of their flexibility, sufficient load capacity and real-time information transmission characteristics. The DBIFTC method proposed in this paper can effectively reduce the problem of underwater vehicle under propeller failure or external disturbance and save unnecessary cost. Social implications The DBIFTC method proposed in this paper can ensure the attitude stability of ROV or other underwater equipment operating in the event of propeller failure or external disturbance. In this way, the robot can better perform undersea work and tasks. Originality/value The kinematics and failure mechanisms of the ROV with multi-vector propulsion system are investigated and established. An optimized DBIFTC scheme is investigated to stabilize ROV yaw attitude under the thruster failure condition. The feasibility and effectiveness of the DBIFTC is experimentally validated.


2015 ◽  
Vol 3 (1) ◽  
pp. 39-60 ◽  
Author(s):  
Ghassan Al-Sinbol ◽  
Mario G Perhinschi ◽  
Brenton K Wilburn

Purpose – A simplified global positioning system (GPS) error model including models for a variety of abnormal operational conditions and failures is developed to provide simulation tools for the design, testing, and evaluation of autonomous flight fault tolerant control laws. The paper aims to discuss these issues. Design/methodology/approach – Analysis and experimental data are used to build simplified models for GPS position and velocity errors on all three channels. The GPS model is interfaced with West Virginia University unmanned aerial vehicles (UAV) simulation environment and its utility demonstrated through simulation for several autonomous flight scenarios including GPS abnormal operation. Findings – The proposed simplified GPS model achieves desirable levels of accuracy and realism for all components for the purpose of general UAV dynamic simulation and development of fault tolerant autonomous flight control laws. Research limitations/implications – The simplified GPS model allows investigating GPS malfunction effects on the performance of autonomous UAVs and designing trajectory tracking algorithms with advanced fault tolerant capabilities. Practical implications – The simplified GPS model has proved to be a flexible and useful tool for UAV simulation and design of autonomous flight control laws at normal and abnormal conditions. Originality/value – The outcomes of this research effort achieve a level of detail never attempted before in modeling GPS operation at normal and abnormal conditions for UAV simulation and autonomous flight control laws design using a simplified framework.


Sign in / Sign up

Export Citation Format

Share Document