Based on minimum fuel consumption mode integrated optimal control of fixed-wing UAV flight propulsion system

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yong Li ◽  
Feifei Han ◽  
Xinzhe Zhang ◽  
Kai Peng ◽  
Li Dang

Purpose In this paper, with the goal of reducing the fuel consumption of UAV, the engine performance optimization is studied and on the basis of aircraft/engine integrated control, the minimum fuel consumption optimization method of engine given thrust is proposed. In the case of keeping the given thrust of the engine unchanged, the main fuel flow of the engine without being connected to the afterburner is optimally controlled so as to minimize the fuel consumption. Design/methodology/approach In this study, the reference model real-time optimization control method is adopted. The engine reference model uses a nonlinear real-time mathematical model of a certain engine component method. The quasi-Newton method is adopted in the optimization algorithm. According to the optimization variable nozzle area, the turbine drop-pressure ratio corresponding to the optimized nozzle area is calculated, which is superimposed with the difference of the drop-pressure ratio of the conventional control plan and output to the conventional nozzle controller of the engine. The nozzle area is controlled by the conventional nozzle controller. Findings The engine real-time minimum fuel consumption optimization control method studied in this study can significantly reduce the engine fuel consumption rate under a given thrust. At the work point, this is a low-altitude large Mach work point, which is relatively close to the edge of the flight envelope. Before turning on the optimization controller, the fuel consumption is 0.8124 kg/s. After turning on the optimization controller, you can see that the fuel supply has decreased by about 4%. At this time, the speed of the high-pressure rotor is about 94% and the temperature after the turbine can remain stable all the time. Practical implications The optimal control method of minimum fuel consumption for the given thrust of UAV is proposed in this paper and the optimal control is carried out for the nozzle area of the engine. At the same time, a method is proposed to indirectly control the nozzle area by changing the turbine pressure ratio. The relevant UAV and its power plant designers and developers may consider the results of this study to reach a feasible solution to reduce the fuel consumption of UAV. Originality/value Fuel consumption optimization can save fuel consumption during aircraft cruising, increase the economy of commercial aircraft and improve the combat radius of military aircraft. With the increasingly wide application of UAVs in military and civilian fields, the demand for energy-saving and emission reduction will promote the UAV industry to improve the awareness of environmental protection and reduce the cost of UAV use and operation.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shi Zhao ◽  
Tien-Fu Lu ◽  
Larissa Statsenko ◽  
Benjamin Koch ◽  
Chris Garcia

Purpose In the mining industry, a run-of-mine (ROM) stockpile is a temporary storage unit, but it is also widely accepted as an effective method to reduce the short-term variations of ore grade. However, tracing ore grade at ROM stockpiles accurately using most current fleet management systems is challenging, due to insufficient information available in real time. This study aims to build a three-dimensional (3D) model for ROM stockpiles continuously based on fine-grained grade information through integrating data from a number of ore grade tracking sources. Design/methodology/approach Following a literature review, a framework for a new stockpile management system is proposed. In this system, near real-time high-resolution 3D ROM stockpile models are created based on dump/load locations measured from global positioning system sensors. Each stockpile model contains a group of layers which are separated by different qualities. Findings Acquiring the geometric shapes of all the layers in a stockpile and cuts made by front wheel loaders provides a better understanding about the quality and quality distribution within a stockpile when it is stacked/reclaimed. Such a ROM stockpile model can provide information on predicating ore blend quality with high accuracy and high efficiency. Furthermore, a 3D stockyard model created based on such ROM stockpile models can help organisations optimise material flow and reduce the cost. Research limitations/implications The modelling algorithm is evaluated using a laboratory scaled stockpile at this stage. The authors expect to scan a real stockpile and create a reference model from it. Meanwhile, the geometric model cannot represent slump or collapse during reclaiming faithfully. Therefore, the model is expected to be reconcile monthly using laser scanning data. Practical implications The proposed model is currently translated to the operations at OZ Minerals. The use of such model will reduce the handling costs and improve the efficiency of existing grade management systems in the mining industry. Originality/value This study provides a solution to build a near real-time high-resolution multi-layered 3D stockpile model through using currently available information and resources. Such novel and low-cost stockpile model will improve the production rates with good output product quality control.


2014 ◽  
Vol 651-653 ◽  
pp. 751-756
Author(s):  
Peng Fei Cheng ◽  
Cheng Fu Wu ◽  
Yue Guo

This paper develops a high-sideslip flight control scheme based on model reference adaptive control (MRAC) to stabilize aircraft under aileron deadlock of one side. Firstly, the cascaded flight control scheme for high-sideslip straight flight is presented and how the control signals transfer is also analyzed. After that, the control structure and laws of MRAC for attitude inner-loop connected with sideslip command are designed. Finally, the control scheme is verified under a nonlinear aircraft model in conditions of no fault and one side aileron deadlock respectively. The simulation results show that when one side aileron deadlock occurs in accompany with the plant’s aerodynamic data perturbation and random initialization of controller parameters, this control method could utilize operation points of no-fault aircraft to force the faulty aircraft following the given reference model responses and finally tracking given sideslip angle command without static error robustly.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rukshanda Kamran ◽  
Nasreen Khan ◽  
Balan Sundarakani

Purpose Blockchain technology offers a lot of potential benefits in supply chain management. However, there is a need of a reference model which addresses the gaps in existing frameworks. This paper aims to propose a blockchain technology-based reference model which can be applied to global logistics operations. Design/methodology/approach The researchers have integrated the fit-for-purpose theoretical framework and prototyping methodology to design the reference model, a blockchain-based logistics, tracking and traceability system (BLTTS). The researchers demonstrated the application of the reference model through a health-care supply chain case study. The proposed BLTTS can be implemented across global logistics operations for business performance improvement. Findings The research provides a framework and recommendations for global companies to consider when adopting the blockchain technology for implementation. The researchers found that the Ethereum blockchain technology improves security of the data shared within the block through the secure hashing algorithm 1. The hash algorithm ensures anonymity of the involved parties. The model integrates blockchain with supply chain thus creating transparent process, efficiency and real-time communication. Research limitations/implications The reference model will offer a better solution to global logistics operations challenges. It provides recommendations to key stakeholders involved in logistics operations segment of the logistics industry while adopting blockchain technology. Apart from the methodological limitation of the study, the system compatibility and the layer configuration aspects might be posing potential challenges while upscaling the implementation. Originality/value The proposed reference model overcomes the drawbacks of existing models as it integrates Ethereum technology. In addition, the researchers have applied the model to demonstrate its functioning in real-time environment, which could guide for future research.


2016 ◽  
Vol 36 (4) ◽  
pp. 460-472 ◽  
Author(s):  
Jing Hu ◽  
Yuan Zhang ◽  
Maogen GE ◽  
Mingzhou Liu ◽  
Liu Conghu ◽  
...  

Purpose The optimal control on reassembly (remanufacturing assembly) error is one of the key technologies to guarantee the assembly precision of remanufactured product. However, because of the uncertainty existing in remanufactured parts, it is difficult to control assembly error during reassembly process. Based on the state space model, this paper aims to propose the optimal control method on reassembly precision to solve this problem. Design/methodology/approach Initially, to ensure the assembly precision of a remanufactured car engine, this paper puts forward an optimal control method on assembly precision for a remanufactured car engine based on the state space model. This method takes assembly workstation operation and remanufactured part attribute as the input vector reassembly status as the state vector and assembly precision as the output vector. Then, the compensation function of reassembly workstation operation input vector is calculated to direct the optimization of the reassembly process. Finally, a case study of a certain remanufactured car engine crankshaft is constructed to verify the feasibility and effectiveness of the method proposed. Findings The optimal control method on reassembly precision is an effective technology in improving the quality of the remanufactured crankshaft. The average qualified rate of the remanufactured crankshaft increased from 83.05 to 90.97 per cent as shown in the case study. Originality/value The optimal control method on the reassembly precision based on the state space model is available to control the assembly precision, thus enhancing the core competitiveness of the remanufacturing enterprises.


2014 ◽  
Vol 490-491 ◽  
pp. 1013-1017
Author(s):  
Jie Hui Li ◽  
Tie Nan Huang ◽  
Lu Yun Zhang ◽  
Qing Yu

This article took ISG Hybrid Electric Vehicle (HEV) as the target, studied its different engine starts under traditional control and μC/OS-II multitask real time operating system. Through the experimental comparisons in engine start strategy and control method, this study reached the conclusion that, the engine start process under μC/OS-II multitask real time operating system is more precise and smooth than that under the traditional control. In this way, multitask real time operating system can help reduce the fuel consumption and emission in engine start.


2021 ◽  
Vol 14 (1) ◽  
pp. 107
Author(s):  
Qiming Ye ◽  
Yuxiang Feng ◽  
Eduardo Candela ◽  
Jose Escribano Macias ◽  
Marc Stettler ◽  
...  

Complete streets scheme makes seminal contributions to securing the basic public right-of-way (ROW), improving road safety, and maintaining high traffic efficiency for all modes of commute. However, such a popular street design paradigm also faces endogenous pressures like the appeal to a more balanced ROW for non-vehicular users. In addition, the deployment of Autonomous Vehicle (AV) mobility is likely to challenge the conventional use of the street space as well as this scheme. Previous studies have invented automated control techniques for specific road management issues, such as traffic light control and lane management. Whereas models and algorithms that dynamically calibrate the ROW of road space corresponding to travel demands and place-making requirements still represent a research gap. This study proposes a novel optimal control method that decides the ROW of road space assigned to driveways and sidewalks in real-time. To solve this optimal control task, a reinforcement learning method is introduced that employs a microscopic traffic simulator, namely SUMO, as its environment. The model was trained for 150 episodes using a four-legged intersection and joint AVs-pedestrian travel demands of a day. Results evidenced the effectiveness of the model in both symmetric and asymmetric road settings. After being trained by 150 episodes, our proposed model significantly increased its comprehensive reward of both pedestrians and vehicular traffic efficiency and sidewalk ratio by 10.39%. Decisions on the balanced ROW are optimised as 90.16% of the edges decrease the driveways supply and raise sidewalk shares by approximately 9%. Moreover, during 18.22% of the tested time slots, a lane-width equivalent space is shifted from driveways to sidewalks, minimising the travel costs for both an AV fleet and pedestrians. Our study primarily contributes to the modelling architecture and algorithms concerning centralised and real-time ROW management. Prospective applications out of this method are likely to facilitate AV mobility-oriented road management and pedestrian-friendly street space design in the near future.


2018 ◽  
Vol 20 (6) ◽  
pp. 640-652 ◽  
Author(s):  
Jose Manuel Luján ◽  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Alberto Reig

This work studies the effect and performance of an optimal control strategy on engine fuel efficiency and pollutant emissions. An accurate mean value control-oriented engine model has been developed and experimental validation on a wide range of operating conditions was carried out. A direct optimization method based on Euler’s collocation scheme is used in combination with the above model in order to address the optimal control of the engine. This optimization method provides the optimal trajectories of engine controls (fueling rate, exhaust gas recirculation valve position, variable turbine geometry position and start of injection) to reproduce a predefined route (speed trajectory including variable road grade), minimizing fuel consumption with limited [Formula: see text] emissions and a low soot stamp. This optimization procedure is performed for a set of different [Formula: see text] emission limits in order to analyze the trade-off between optimal fuel consumption and minimum emissions. Optimal control strategies are validated in an engine test bench and compared against engine factory calibration. Experimental results show that significant improvements in both fuel efficiency and emissions reduction can be achieved with optimal control strategy. Fuel savings at about 4% and less than half of the factory [Formula: see text] emissions were measured in the actual engine, while soot generation was still low. Experimental results and optimal control trajectories are thoroughly analyzed, identifying the different strategies that allowed those performance improvements.


Sign in / Sign up

Export Citation Format

Share Document